This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2009 Brazil Team Selection Test, 1

Let $n \in \mathbb N$ and $A_n$ set of all permutations $(a_1, \ldots, a_n)$ of the set $\{1, 2, \ldots , n\}$ for which \[k|2(a_1 + \cdots+ a_k), \text{ for all } 1 \leq k \leq n.\] Find the number of elements of the set $A_n$. [i]Proposed by Vidan Govedarica, Serbia[/i]

2019 All-Russian Olympiad, 7

$24$ students attend a mathematical circle. For any team consisting of $6$ students, the teacher considers it to be either [b]GOOD [/b] or [b]OK[/b]. For the tournament of mathematical battles, the teacher wants to partition all the students into $4$ teams of $6$ students each. May it happen that every such partition contains either $3$ [b]GOOD[/b] teams or exactly one [b]GOOD[/b] team and both options are present?

1968 Poland - Second Round, 3

Show that if at least five persons are sitting at a round table, then it is possible to rearrange them so that everyone has two new neighbors.

2005 ISI B.Stat Entrance Exam, 10

Let $ABC$ be a triangle. Take $n$ point lying on the side $AB$ (different from $A$ and $B$) and connect all of them by straight lines to the vertex $C$. Similarly, take $n$ points on the side $AC$ and connect them to $B$. Into how many regions is the triangle $ABC$ partitioned by these lines? Further, take $n$ points on the side $BC$ also and join them with $A$. Assume that no three straight lines meet at a point other than $A,B$ and $C$. Into how many regions is the triangle $ABC$ partitioned now?

2019 Dürer Math Competition (First Round), P3

a) We are playing the following game on this table: In each move we select a row or a column of the table, reduce two neighboring numbers in that row or column by $1$ and increase the third one by $1$. After some of these moves can we get to a table with all the same entries? b) This time we have the choice to arrange the integers from $1$ to $9$ in the$ 3 \times3$ table. Still using the same moves now our aim is to create a table with all the same entries, maximising the value of the entries. What is the highest possible number we can achieve?

1990 IMO Longlists, 33

Let S be a 1990-element set and P be a set of 100-ary sequences $(a_1,a_2,...,a_{100})$ ,where $a_i's$ are distinct elements of S.An ordered pair (x,y) of elements of S is said to [i]appear[/i] in $(a_1,a_2,...,a_{100})$ if $x=a_i$ and $y=a_j$ for some i,j with $1\leq i<j\leq 100$.Assume that every ordered pair (x,y) of elements of S appears in at most one member in P.Show that $|P|\leq 800$.

2015 Israel National Olympiad, 6

Let $n\geq1$ be a positive integer. $n$ lamps are placed in a line. At minute 0, some lamps are on (maybe all of them). Every minute the state of the lamps changes: A lamp is on at minute $t+1$ if and only if at minute $t$, exactly one of its neighbors is on (the two lamps at the ends have one neighbor each, all other lamps have two neighbors). For which values of $n$ can we guarantee that all lamps will be off after some time?

2021 Princeton University Math Competition, 14

Heron is going to watch a show with $n$ episodes which are released one each day. Heron wants to watch the first and last episodes on the days they first air, and he doesn’t want to have two days in a row that he watches no episodes. He can watch as many episodes as he wants in a day. Denote by $f(n)$ the number of ways Heron can choose how many episodes he watches each day satisfying these constraints. Let $N$ be the $2021$st smallest value of $n$ where $f(n) \equiv 2$ mod $3$. Find $N$.

1986 All Soviet Union Mathematical Olympiad, 432

Given $30$ equal cups with milk. An elf tries to make the amount of milk equal in all the cups. He takes a pair of cups and aligns the milk level in two cups. Can there be such an initial distribution of milk in the cups, that the elf will not be able to achieve his goal in a finite number of operations?

2021 Czech and Slovak Olympiad III A, 1

A fraction with $1010$ squares in the numerator and $1011$ squares in the denominator serves as a game board for a two player game. $$\frac{\square + \square +...+ \square}{\square + \square +...+ \square+ \square}$$ Players take turns in moves. In each turn, the player chooses one of the numbers $1, 2,. . . , 2021$ and inserts it in any empty field. Each number can only be used once. The starting player wins if the value of the fraction after all the fields is filled differs from number $1$ by less than $10^{-6}$. Otherwise, the other player wins. Decide which of the players has a winning strategy. (Pavel Šalom)

2022 USA TSTST, 5

Let $A_1$, $\ldots$, $A_{2022}$ be the vertices of a regular $2022$-gon in the plane. Alice and Bob play a game. Alice secretly chooses a line and colors all points in the plane on one side of the line blue, and all points on the other side of the line red. Points on the line are colored blue, so every point in the plane is either red or blue. (Bob cannot see the colors of the points.) In each round, Bob chooses a point in the plane (not necessarily among $A_1, \ldots, A_{2022}$) and Alice responds truthfully with the color of that point. What is the smallest number $Q$ for which Bob has a strategy to always determine the colors of points $A_1, \ldots, A_{2022}$ in $Q$ rounds?

1983 IMO Longlists, 37

The points $A_1,A_2, \ldots , A_{1983}$ are set on the circumference of a circle and each is given one of the values $\pm 1$. Show that if the number of points with the value $+1$ is greater than $1789$, then at least $1207$ of the points will have the property that the partial sums that can be formed by taking the numbers from them to any other point, in either direction, are strictly positive.

EMCC Guts Rounds, 2016

[u]Round 1[/u] [b]p1.[/b] Suppose that gold satisfies the relation $p = v + v^2$, where $p$ is the price and $v$ is the volume. How many pieces of gold with volume $1$ can be bought for the price of a piece with volume $2$? [b]p2.[/b] Find the smallest prime number with each digit greater or equal to $8$. [b]p3.[/b] What fraction of regular hexagon $ZUMING$ is covered by both quadrilateral $ZUMI$ and quadrilateral$ MING$? [u]Round 2[/u] [b]p4.[/b] The two smallest positive integers expressible as the sum of two (not necessarily positive) perfect cubes are $1 = 1^3 +0^3$ and $2 = 1^3 +1^3$. Find the next smallest positive integer expressible in this form. [b]p5.[/b] In how many ways can the numbers $1, 2, 3,$ and $4$ be written in a row such that no two adjacent numbers differ by exactly $1$? [b]p6.[/b] A real number is placed in each cell of a grid with $3$ rows and $4$ columns. The average of the numbers in each column is $2016$, and the average of the numbers in each row is a constant $x$. Compute $x$. [u]Round 3[/u] [b]p7.[/b] Fardin is walking from his home to his oce at a speed of $1$ meter per second, expecting to arrive exactly on time. When he is halfway there, he realizes that he forgot to bring his pocketwatch, so he runs back to his house at $2$ meters per second. If he now decides to travel from his home to his office at $x$ meters per second, find the minimum $x$ that will allow him to be on time. [b]p8.[/b] In triangle $ABC$, the angle bisector of $\angle B$ intersects the perpendicular bisector of $AB$ at point $P$ on segment $AC$. Given that $\angle C = 60^o$, determine the measure of $\angle CPB$ in degrees. [b]p9.[/b] Katie colors each of the cells of a $6\times 6$ grid either black or white. From top to bottom, the number of black squares in each row are $1$, $2$, $3$, $4$, $5$, and $6$, respectively. From left to right, the number of black squares in each column are $6$, $5$, $4$, $3$, $2$, and $1$, respectively. In how many ways could Katie have colored the grid? [u]Round 4[/u] [b]p10.[/b] Lily stands at the origin of a number line. Each second, she either moves $2$ units to the right or $1$ unit to the left. At how many different places could she be after $2016$ seconds? [b]p11.[/b] There are $125$ politicians standing in a row. Each either always tells the truth or always lies. Furthermore, each politician (except the leftmost politician) claims that at least half of the people to his left always lie. Find the number of politicians that always lie. [b]p12.[/b] Two concentric circles with radii $2$ and $5$ are drawn on the plane. What is the side length of the largest square whose area is contained entirely by the region between the two circles? PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h2934055p26256296]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

VI Soros Olympiad 1999 - 2000 (Russia), 9.1

In the television program “Field of Miracles,” the presenter played the prize as follows. The player was shown three boxes, one of which contained a prize. The player pointed to one of the boxes, after which the leader opened one of the other two remaining boxes, which turned out to be empty. After this, the player could either insist on the original choice, or change it and choose the third box. In what case does his chance of winning increase? (There are three possible answers: both boxes are equal, it is better to keep the original choice, it is better to change it. Try to justify your answer.)

1998 Estonia National Olympiad, 3

The hotel has $13$ rooms with rooms from $1$ to $13$, located on one side of a straight corridor in ascending order of numbers. During the tourist season, which lasts from May $1$st to October $1$st, the hotel visitor has the opportunity to rent either one room for two days in a row, or two adjacent rooms together for one day. How much could a hotel owner earn in a season if it is known that on October $1$, rooms $1$ and $13$ were empty, and the payment for one room was one tugrik per day?

2025 Malaysian APMO Camp Selection Test, 5

Fix a positive integer $n\ge 2$. For any cyclic $2n$-gon $P_1 P_2\cdots P_{2n}$ in this order, define its score as the maximal possible value of $$\angle P_iXP_{i+1} + \angle P_{i+n}XP_{i+n+1}$$ across all $1\le i\le n$ (indices modulo $n$), and over all points $X$ inside the $2n$-gon including its boundary. Prove that there exist a real number $r$ such that a cyclic $2n$-gon is regular if and only if it has score $r$. [i]Proposed by Wong Jer Ren[/i]

2010 Contests, 1

There are several candles of the same size on the Chapel of Bones. On the first day a candle is lit for a hour. On the second day two candles are lit for a hour, on the third day three candles are lit for a hour, and successively, until the last day, when all the candles are lit for a hour. On the end of that day, all the candles were completely consumed. Find all the possibilities for the number of candles.

2020 Peru Iberoamerican Team Selection Test, P1

In a classroom there are $m$ students. During the month of July each of them visited the library at least once but none of them visited the library twice in the same day. It turned out that during the month of July each student visited the library a different number of times, furthermore for any two students $A$ and $B$ there was a day in which $A$ visited the library and $B$ did not and there was also a day when $B$ visited the library and $A$ did not do so. Determine the largest possible value of $m$.

2012 IMO Shortlist, C5

The columns and the row of a $3n \times 3n$ square board are numbered $1,2,\ldots ,3n$. Every square $(x,y)$ with $1 \leq x,y \leq 3n$ is colored asparagus, byzantium or citrine according as the modulo $3$ remainder of $x+y$ is $0,1$ or $2$ respectively. One token colored asparagus, byzantium or citrine is placed on each square, so that there are $3n^2$ tokens of each color. Suppose that one can permute the tokens so that each token is moved to a distance of at most $d$ from its original position, each asparagus token replaces a byzantium token, each byzantium token replaces a citrine token, and each citrine token replaces an asparagus token. Prove that it is possible to permute the tokens so that each token is moved to a distance of at most $d+2$ from its original position, and each square contains a token with the same color as the square.

2005 MOP Homework, 7

A segment of length $2$ is divided into $n$, $n\ge 2$, subintervals. A square is then constructed on each subinterval. Assume that the sum of the areas of all such squares is greater than $1$. Show that under this assumption one can always choose two subintervals with total length greater than $1$.

2021 Nigerian MO Round 3, Problem 4

In the multiplication magic square below, $l, m, n, p, q, r, s, t, u$ are positive integers. The product of any three numbers in any row, column or diagonal is equal to a constant $k$, where $k$ is a number between $11, 000$ and $12, 500$. Find the value of $k$. \begin{tabular}{|l|l|l|} \hline $l$ & $m$ & $n$ \\ \hline $p$ & $q$ & $r$ \\ \hline $s$ & $t$ & $u$ \\ \hline \end{tabular}

2009 IMO Shortlist, 2

For any integer $n\geq 2$, let $N(n)$ be the maxima number of triples $(a_i, b_i, c_i)$, $i=1, \ldots, N(n)$, consisting of nonnegative integers $a_i$, $b_i$ and $c_i$ such that the following two conditions are satisfied: [list][*] $a_i+b_i+c_i=n$ for all $i=1, \ldots, N(n)$, [*] If $i\neq j$ then $a_i\neq a_j$, $b_i\neq b_j$ and $c_i\neq c_j$[/list] Determine $N(n)$ for all $n\geq 2$. [i]Proposed by Dan Schwarz, Romania[/i]

2017 IMO Shortlist, C2

Let $n$ be a positive integer. Define a chameleon to be any sequence of $3n$ letters, with exactly $n$ occurrences of each of the letters $a, b,$ and $c$. Define a swap to be the transposition of two adjacent letters in a chameleon. Prove that for any chameleon $X$ , there exists a chameleon $Y$ such that $X$ cannot be changed to $Y$ using fewer than $3n^2/2$ swaps.

Mid-Michigan MO, Grades 7-9, 2008

[b]p1.[/b] Jack made $3$ quarts of fruit drink from orange and apple juice. His drink contains $45\%$ of orange juice. Nick prefers more orange juice in the drink. How much orange juice should he add to the drink to obtain a drink composed of $60\%$ of orange juice? [b]p2.[/b] A square is tiled by smaller squares as shown in the figure. Find the area of the black square in the middle if the perimeter of the big square $ABCD$ is $40$ cm. [img]https://cdn.artofproblemsolving.com/attachments/8/c/d54925cba07f63ec8578048f46e1e730cb8df3.png[/img] [b]p3.[/b] For one particular number $a > 0$ the function f satisfies the equality $f(x + a) =\frac{1 + f(x)}{1 - f(x)}$ for all $x$. Show that $f$ is a periodic function. (A function $f$ is periodic with the period $T$ if $f(x + T) = f(x)$ for any $x$.) [b]p4.[/b] If $a, b, c, x, y, z$ are numbers so that $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}= 1$ and $\frac{a}{x}+\frac{b}{y}+\frac{c}{z}= 0$. Show that $\frac{x^2}{a^2} +\frac{y^2}{b^2} +\frac{z^2}{c^2} = 1$ [b]p5.[/b] Is it possible that a four-digit number $AABB$ is a perfect square? (Same letters denote the same digits). [b]p6.[/b] A finite number of arcs of a circle are painted black (see figure). The total length of these arcs is less than $\frac15$ of the circumference. Show that it is possible to inscribe a square in the circle so that all vertices of the square are in the unpainted portion of the circle. [img]https://cdn.artofproblemsolving.com/attachments/2/c/bdfa61917a47f3de5dd3684627792a9ebf05d5.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2020 JHMT, MS Team

Use the following description of a machine to solve the first 4 problems in the round. A machine displays four digits: $0000$. There are two buttons: button $A$ moves all digits one position to the left and fills the rightmost position with $0$ (for example, it changes $1234$ to $2340$), and button $B$ adds $11$ to the current number, displaying only the last four digits if the sum is greater than $9999$ (for example, it changes $1234$ to $1245$, and changes $9998$ to $0009$). We can denote a sequence of moves by writing down the buttons pushed from left to right. A sequence of moves that outputs $2100$, for example, is $BABAA$. [b]p1[/b]. Give a sequence of $17$ or less moves so that the machine displays $2020$. [b]p2.[/b] Using the same machine, how many outputs are possible if you make at most three moves? [b]p3.[/b] Button $ B$ now adds n to the four digit display, while button $ A$ remains the same. For how many positive integers $n \le 20$ (including $11$) can every possible four-digit output be reached? [b]p4.[/b] Suppose the function of button $ A$ changes to: move all digits one position to the right and fill the leftmost position with $2$. Then, what is the minimum number of moves required for the machine to display $2020$, if it initially displays $0000$? [b]p5.[/b] In the figure below, every inscribed triangle has vertices that are on the midpoints of its circumscribed triangle’s sides. If the area of the largest triangle is $64$, what is the area of the shaded region? [img]https://cdn.artofproblemsolving.com/attachments/6/f/fe17b6a6d0037163f0980a5a5297c1493cc5bb.png[/img] [b]p6.[/b] A bee flies $10\sqrt2$ meters in the direction $45^o$ clockwise of North (that is, in the NE direction). Then, the bee turns $135^o$ clockwise, and flies $20$ forward meters. It continues by turning $60^o$ counterclockwise, and flies forward $14$ meters. Finally, the bee turns $120^o$ clockwise and flies another $14$ meters forward before finally finding a flower to pollinate. How far is the bee from its starting location in meters? [b]p7.[/b] All the digits of a $15$-digit number are either $p$ or $c$. $p$ shows up $3$ more times than $c$ does, and the average of the digits is $c - p$. What is $p + c$? [b]p8.[/b] Let $m$ be the sum of the factors of $75$ (including $1$ and $75$ itself). What is the ones digit of $m^{75}$ ? [b]p9.[/b] John flips a coin twice. For each flip, if it lands tails, he does nothing. If it lands heads, he rolls a fair $4$-sided die with sides labeled 1 through $4$. Let $a/b$ be the probability of never rolling a $3$, in simplest terms. What is $a + b$? [b]p10.[/b] Let $\vartriangle ABC$ have coordinates $(0, 0)$, $(0, 3)$,$(18, 0)$. Find the number of integer coordinates interior (excluding the vertices and edges) of the triangle. [b]p11.[/b] What is the greatest integer $k$ such that $2^k$ divides the value $20! \times 20^{20}$? [b]p12.[/b] David has $n$ pennies, where $n$ is a natural number. One apple costs $3$ pennies, one banana costs $5$ pennies, and one cranberry costs $7$ pennies. If David spends all his money on apples, he will have $2$ pennies left; if David spends all his money on bananas, he will have $4$ pennies left; is David spends all his money on cranberries, he will have $6$ pennies left. What is the second least possible amount of pennies that David can have? [b]p13.[/b] Elvin is currently at Hopperville which is $40$ miles from Waltimore and $50$ miles from Boshington DC. He takes a taxi back to Waltimore, but unfortunately the taxi gets lost. Elvin now finds himself at Kinsville, but he notices that he is still $40$ miles from Waltimore and $50$ miles from Boshington $DC$. If Waltimore and Boshington DC are $30$ miles apart, What is the maximum possible distance between Hopperville and Kinsville? [b]p14.[/b] After dinner, Rick asks his father for $1000$ scoops of ice cream as dessert. Rick’s father responds, “I will give you $2$ scoops of ice cream, plus $ 1$ additional scoop for every ordered pair $(a, b)$ of real numbers satisfying $\frac{1}{a + b}= \frac{1}{a}+ \frac{1}{b}$ you can find.” If Rick finds every solution to the equation, how many scoops of ice cream will he receive? [b]p15.[/b] Esther decides to hold a rock-paper-scissors tournament for the $56$ students at her school. As a rule, competitors must lose twice before they are eliminated. Each round, all remaining competitors are matched together in best-of-1 rock-paper-scissors duels. If there is an odd number of competitors in a round, one random competitor will not compete that round. What is the maximum number of matches needed to determine the rock-paper-scissors champion? [b]p16.[/b] $ABCD$ is a rectangle. $X$ is a point on $\overline{AD}$, $Y$ is a point on $\overline{AB}$, and $N$ is a point outside $ABCD$ such that $XYNC$ is also a rectangle and $YN$ intersects $\overline{BC}$ at its midpoint $M$. $ \angle BYM = 45^o$. If $MN = 5$, what is the sum of the areas of $ABCD$ and $XYNC$? [b]p17. [/b] Mr. Brown has $10$ identical chocolate donuts and $15$ identical glazed donuts. He knows that Amar wants $6$ donuts, Benny wants $9$ donuts, and Callie wants $9$ donuts. How many ways can he distribute out his $25$ donuts? [b]p18.[/b] When Eric gets on the bus home, he notices his $ 12$-hour watch reads $03: 30$, but it isn’t working as expected. The second hand makes a full rotation in $4$ seconds, then makes another in $8$ seconds, then another in $ 12$ seconds, and so on until it makes a full rotation in $60$ seconds. Then it repeats this process, and again makes a full rotation in $4$ second, then $8$ seconds, etc. Meanwhile, the minute hand and hour hand continue to function as if every full rotation of the second hand represents $60$ seconds. When Eric gets off the bus $75$ minutes later, his watch reads $AB: CD$. What is $A + B + C + D$? [b]p19.[/b] Alex and Betty want to meet each other at the airport. Alex will arrive at the airport between $12: 00$ and $13: 15$, and will wait for Betty for $15$ minutes before he leaves. Betty will arrive at the airport between $12: 30$ and $13: 10$, and will wait for Alex for $10$ minutes before she leaves. The chance that they arrive at any time in their respective time intervals is equally likely. The probability that they will meet at the airport can be expressed as $a/b$ where $a/b$ is a fraction written in simplest form. What is $a + b$? [b]p20.[/b] Let there be $\vartriangle ABC$ such that $A = (0, 0)$, $B = (23, 0)$, $C = (a, b)$. Furthermore, $D$, the center of the circle that circumscribes $\vartriangle ABC$, lies on $\overline{AB}$. Let $\angle CDB = 150^o$. If the area of $\vartriangle ABC$ is $m/n$ where $m, n$ are in simplest integer form, find the value of $m \,\, \mod \,\,n$ (The remainder of $m$ divided by $n$). PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].