Found problems: 14842
2024/2025 TOURNAMENT OF TOWNS, P7
The hostess takes a piece of meat from the fridge; kittens gather around her. Each minute, the hostess cuts a part from the piece and feeds it to one of the kittens (on her choice). Each time, the cut part is in the same proportion to the current piece. At some moment, the hostess puts the rest of the meat into the fridge. Can the hostess give the
same amount of meat in total to each kitten if
a) the number of kittens equals two; (3 marks)
b) the number of kittens equals three? (7 marks)
1964 Poland - Second Round, 6
Prove that from any five points in the plane it is possible to choose three points that are not vertices of an acute triangle.
2015 Kyiv Math Festival, P2
In a company of 7 sousliks each souslik has 4 friends. Is it always possible to find in this company two
non-intersecting groups of 3 sousliks each such that in both groups all sousliks are friends?
2014 ELMO Shortlist, 6
Let $f_0$ be the function from $\mathbb{Z}^2$ to $\{0,1\}$ such that $f_0(0,0)=1$ and $f_0(x,y)=0$ otherwise. For each positive integer $m$, let $f_m(x,y)$ be the remainder when \[ f_{m-1}(x,y) + \sum_{j=-1}^{1} \sum_{k=-1}^{1} f_{m-1}(x+j,y+k) \] is divided by $2$.
Finally, for each nonnegative integer $n$, let $a_n$ denote the number of pairs $(x,y)$ such that $f_n(x,y) = 1$.
Find a closed form for $a_n$.
[i]Proposed by Bobby Shen[/i]
2006 France Team Selection Test, 1
In a $2\times n$ array we have positive reals s.t. the sum of the numbers in each of the $n$ columns is $1$. Show that we can select a number in each column s.t. the sum of the selected numbers in each row is at most $\frac{n+1}4$.
2011 China Team Selection Test, 3
For a given integer $n\ge 2$, let $a_0,a_1,\ldots ,a_n$ be integers satisfying $0=a_0<a_1<\ldots <a_n=2n-1$. Find the smallest possible number of elements in the set $\{ a_i+a_j \mid 0\le i \le j \le n \}$.
2014 Argentina National Olympiad Level 2, 2
There are several counters of various colours and sizes. No two of them have, simultaneously, the same colour and the same size. On each counter $F$ two numbers are written. One of them is the number of counters that have the same colour as $F$ but a different size than $F$. The other number is the number of counters that have the same size as $F$ but a different colour. It is known that each of the $101$ numbers $0,1,\ldots,100$ is written at least once. Determine the smallest number of counters for which this is possible.
MBMT Guts Rounds, 2023
[hide=B stands for Bernoulli, G stands for Germain]they had two problem sets under those two names[/hide]
[u]Set 1[/u]
[b]B1 / G1[/b] Find $20^3 + 2^2 + 3^1$.
[b]B2[/b] A piece of string of length $10$ is cut $4$ times into strings of equal length. What is the length of each small piece of string?
[b]B3 / G2[/b] What is the smallest perfect square that is also a perfect cube?
[b]B4[/b] What is the probability a $5$-sided die with sides labeled from $1$ through $5$ rolls an odd number?
[b]B5 / G3[/b] Hanfei spent $14$ dollars on chicken nuggets at McDonalds. $4$ nuggets cost $3$ dollars, $6$ nuggets cost $4$ dollars, and $12$ nuggets cost $9$ dollars. How many chicken nuggets did Hanfei buy?
[u]Set 2[/u]
[b]B6[/b] What is the probability a randomly chosen positive integer less than or equal to $15$ is prime?
[b]B7[/b] Andrew flips a fair coin with sides labeled 0 and 1 and also rolls a fair die with sides labeled $1$ through $6$. What is the probability that the sum is greater than $5$?
[b]B8 / G4[/b] What is the radius of a circle with area $4$?
[b]B9[/b] What is the maximum number of equilateral triangles on a piece of paper that can share the same corner?
[b]B10 / G5[/b] Bob likes to make pizzas. Bab also likes to make pizzas. Bob can make a pizza in $20$ minutes. Bab can make a pizza in $30$ minutes. If Bob and Bab want to make $50$ pizzas in total, how many hours would that take them?
[u]Set 3[/u]
[b]B11 / G6[/b] Find the area of an equilateral rectangle with perimeter $20$.
[b]B12 / G7[/b] What is the minimum possible number of divisors that the sum of two prime numbers greater than $2$ can have?
[b]B13 / G8[/b] Kwu and Kz play rock-paper-scissors-dynamite, a variant of the classic rock-paperscissors in which dynamite beats rock and paper but loses to scissors. The standard rock-paper-scissors rules apply, where rock beats scissors, paper beats rock, and scissors beats paper. If they throw out the same option, they keep playing until one of them wins. If Kz randomly throws out one of the four options with equal probability, while Kwu only throws out dynamite, what is the probability Kwu wins?
[b]B14 / G9[/b] Aven has $4$ distinct baguettes in a bag. He picks three of the bagged baguettes at random and lays them on a table in random order. How many possible orderings of three baguettes are there on the table?
[b]B15 / G10[/b] Find the largest $7$-digit palindrome that is divisible by $11$.
PS. You should use hide for answers. Rest problems have been posted [url=https://artofproblemsolving.com/community/c3h3132170p28376644]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1988 Tournament Of Towns, (164) 1
In January Kolya and Vasya have been assessed at school $20$ times and each has been given $20$ marks (each being an integer no greater than $5$ , with both Kolya and Vasya receiving at least twos on each occasion). Kolya has been given as many fives as Vasya fours, as many fours as Vasya threes, as many threes as Vasya twos and as many twos as Vasya fives. If each has the same average mark , determine how many twos were given to Kolya.
(S . Fomin, Leningrad)
2018 Peru Iberoamerican Team Selection Test, P7
There is a finite set of points in the plane, where each point is painted in any of $ n $ different colors $ (n \ge 4) $. It is known that there is at least one point of each color and that the distance between any pair of different colored points is less than or equal a 1. Prove that it is possible to choose 3 colors so that, by removing all points of those colors, the remaining set of points can be covered with a radius circle $ \frac {1} {\sqrt {3}} $.
2007 Bulgaria National Olympiad, 2
Find the greatest positive integer $n$ such that we can choose $2007$ different positive integers from $[2\cdot 10^{n-1},10^{n})$ such that for each two $1\leq i<j\leq n$ there exists a positive integer $\overline{a_{1}a_{2}\ldots a_{n}}$ from the chosen integers for which $a_{j}\geq a_{i}+2$.
[i]A. Ivanov, E. Kolev[/i]
2014 CHMMC (Fall), 9
There is a long-standing conjecture that there is no number with $2n + 1$ instances in Pascal’s triangle for $n \ge 2$. Assuming this is true, for how many $n \le 100, 000$ are there exactly $3$ instances of $n$ in Pascal’s triangle?
Mid-Michigan MO, Grades 7-9, 2015
[b]p1.[/b] Thirty players participate in a chess tournament. Every player plays one game with every other player. What maximal number of players can get exactly $5$ points? (any game adds $1$ point to the winner’s score, $0$ points to a loser’s score, in the case of a draw each player obtains $1/2$ point.)
[b]p2.[/b] A father and his son returned from a fishing trip. To make their catches equal the father gave to his son some of his fish. If, instead, the son had given his father the same number of fish, then father would have had twice as many fish as his son. What percent more is the father's catch more than his son's?
[b]p3.[/b] What is the maximal number of pieces of two shapes, [img]https://cdn.artofproblemsolving.com/attachments/a/5/6c567cf6a04b0aa9e998dbae3803b6eeb24a35.png[/img] and [img]https://cdn.artofproblemsolving.com/attachments/8/a/7a7754d0f2517c93c5bb931fb7b5ae8f5e3217.png[/img], that can be used to tile a $7\times 7$ square?
[b]p4.[/b] Six shooters participate in a shooting competition. Every participant has $5$ shots. Each shot adds from 1 to $10$ points to shooter’s score. Every person can score totally for all five shots from $5$ to $50$ points. Each participant gets $7$ points for at least one of his shots. The scores of all participants are different. We enumerate the shooters $1$ to $6$ according to their scores, the person with maximal score obtains number $1$, the next one obtains number $2$, the person with minimal score obtains number $6$. What score does obtain the participant number 3? The total number of all obtained points is $264$.
[b]p5.[/b] There are $2014$ stones in a pile. Two players play the following game. First, player $A$ takes some number of stones (from $1$ to $30$) from the pile, then player B takes $1$ or $2$ stones, then player $A$ takes $2$ or $3$ stones, then player $B$ takes $3$ or $4$ stones, then player A takes $4$ or $5$ stones, etc. The player who gets the last stone is the winner. If no player gets the last stone (there is at least one stone in the pile but the next move is not allowed) then the game results in a draw. Who wins the game using the right strategy?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2013 BMT Spring, 11
Let $t = (a, b, c)$, and let us define $f^1 (t) = (a + b, b + c, c + a)$ and $f^k (t) = f^{k-1}(f^1(t))$ for all $k > 1$. Furthermore, a permutation of $t$ has the same elements, just in a different order (e.g., $(b, c, a)$). If $f^{2013}(s)$ is a permutation of $s$ for some $s = (k, m, n)$, where $k, m$, and $n$ are integers such that $|k|, |m|, |n|\le 10$, how many possible values of $s$ are there?
2017 China National Olympiad, 3
Consider a rectangle $R$ partitioned into $2016$ smaller rectangles such that the sides of each smaller rectangle is parallel to one of the sides of the original rectangle. Call the corners of each rectangle a vertex. For any segment joining two vertices, call it basic if no other vertex lie on it. (The segments must be part of the partitioning.) Find the maximum/minimum possible number of basic segments over all possible partitions of $R$.
2008 Bosnia And Herzegovina - Regional Olympiad, 4
A rectangular table $ 9$ rows $ \times$ $ 2008$ columns is fulfilled with numbers $ 1$, $ 2$, ...,$ 2008$ in a such way that each number appears exactly $ 9$ times in table and difference between any two numbers from same column is not greater than $ 3$. What is maximum value of minimum sum in column (with minimal sum)?
2014 Tournament of Towns., 2
Peter marks several cells on a $5\times 5$ board. Basil wins if he can cover all marked cells with three-cell corners. The corners must be inside the board and not overlap. What is the least number of cells Peter should mark to prevent Basil from winning? (Cells of the corners must coincide with the cells of the board).
2018 China Girls Math Olympiad, 7
Given $2018 \times 4$ grids and tint them with red and blue. So that each row and each column has the same number of red and blue grids, respectively. Suppose there're $M$ ways to tint the grids with the mentioned requirement. Determine $M \pmod {2018}$.
2009 Romania National Olympiad, 4
We say that a natural number $ n\ge 4 $ is [i]unusual[/i] if, for any $ n\times n $ array of real numbers, the sum of the numbers from any $ 3\times 3 $ compact subarray is negative, and the sum of the numbers from any $ 4\times 4 $ compact subarray is positive.
Find all unusual numbers.
2018 Math Hour Olympiad, 8-10
[u]Round 1[/u]
[b]p1.[/b] Five children, Aisha, Baesha, Cosha, Dasha, and Erisha, competed in running, jumping, and throwing. In each event, first place was won by someone from Renton, second place by someone from Seattle, and third place by someone from Tacoma. Aisha was last in running, Cosha was last in jumping, and Erisha was last in throwing. Could Baesha and Dasha be from the same city?
[b]p2.[/b] Fifty-five Brits and Italians met in a coffee shop, and each of them ordered either coffee or tea. Brits tell the truth when they drink tea and lie when they drink coffee; Italians do it the other way around. A reporter ran a quick survey:
Forty-four people answered “yes” to the question, “Are you drinking coffee?”
Thirty-three people answered “yes” to the question, “Are you Italian?”
Twenty-two people agreed with the statement, “It is raining outside.”
How many Brits in the coffee shop are drinking tea?
[b]p3.[/b] Doctor Strange is lost in a strange house with a large number of identical rooms, connected to each other in a loop. Each room has a light and a switch that could be turned on and off. The lights might initially be on in some rooms and off in others. How can Dr. Strange determine the number of rooms in the house if he is only allowed to switch lights on and off?
[b]p4.[/b] Fifty street artists are scheduled to give solo shows with three consecutive acts: juggling, drumming, and gymnastics, in that order. Each artist will spend equal time on each of the three activities, but the lengths may be different for different artists. At least one artist will be drumming at every moment from dawn to dusk. A new law was just passed that says two artists may not drum at the same time. Show that it is possible to cancel some of the artists' complete shows, without rescheduling the rest, so that at least one show is going on at every moment from dawn to dusk, and the schedule complies with the new law.
[b]p5.[/b] Alice and Bob split the numbers from $1$ to $12$ into two piles with six numbers in each pile. Alice lists the numbers in the first pile in increasing order as $a_1 < a_2 < a_3 < a_4 < a_5 < a_6$ and Bob lists the numbers in the second pile in decreasing order $b_1 > b_1 > b_3 > b_4 > b_5 > b_6$. Show that no matter how they split the numbers, $$|a_1 -b_1| + |a_2 -b_2| + |a_3 -b_3| + |a_4 -b_4| + |a_5 -b_5| + |a_6 -b_6| = 36.$$
[u]Round 2[/u]
[b]p6.[/b] The Martian alphabet has ? letters. Marvin writes down a word and notices that within every sub-word (a contiguous stretch of letters) at least one letter occurs an odd number of times. What is the length of the longest possible word he could have written?
[b]p7.[/b] For a long space journey, two astronauts with compatible personalities are to be selected from $24$ candidates. To find a good fit, each candidate was asked $24$ questions that required a simple yes or no answer. Two astronauts are compatible if exactly $12$ of their answers matched (that is, both answered yes or both answered no). Miraculously, every pair of these $24$ astronauts was compatible! Show that there were exactly $12$ astronauts whose answer to the question “Can you repair a flux capacitor?” was exactly the same as their answer to the question “Are you afraid of heights?” (that is, yes to both or no to both).
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2016 Indonesia TST, 3
Let $n$ be a positive integer. Two players $A$ and $B$ play a game in which they take turns choosing positive integers $k \le n$. The rules of the game are:
(i) A player cannot choose a number that has been chosen by either player on any previous turn.
(ii) A player cannot choose a number consecutive to any of those the player has already chosen on any previous turn.
(iii) The game is a draw if all numbers have been chosen; otherwise the player who cannot choose a number anymore loses the game.
The player $A$ takes the first turn. Determine the outcome of the game, assuming that both players use optimal strategies.
[i]Proposed by Finland[/i]
2021 Azerbaijan IMO TST, 3
The Fibonacci numbers $F_0, F_1, F_2, . . .$ are defined inductively by $F_0=0, F_1=1$, and $F_{n+1}=F_n+F_{n-1}$ for $n \ge 1$. Given an integer $n \ge 2$, determine the smallest size of a set $S$ of integers such that for every $k=2, 3, . . . , n$ there exist some $x, y \in S$ such that $x-y=F_k$.
[i]Proposed by Croatia[/i]
2016 Saudi Arabia BMO TST, 4
Find all natural numbers $n\geq 3$ satisfying one can cut a convex $n$-gon into different triangles along some of the diagonals (None of these diagonals intersects others at any point other than vertices) and the number of diagonals are used at each vertex is even.
2008 Saint Petersburg Mathematical Olympiad, 1
We color some cells in $10000 \times 10000$ square, such that every $10 \times 10$ square and every $1 \times 100$ line have at least one coloring cell. What minimum number of cells we should color ?
1989 Kurschak Competition, 3
We play the following game in a Cartesian coordinate system in the plane. Given the input $(x,y)$, in one step, we may move to the point $(x,y\pm 2x)$ or to the point $(x\pm 2y,y)$. There is also an additional rule: it is not allowed to make two steps that lead back to the same point (i.e, to step backwards).
Prove that starting from the point $\left(1;\sqrt 2\right)$, we cannot return to it in finitely many steps.