Found problems: 14842
2017 China Team Selection Test, 3
For a rational point (x,y), if xy is an integer that divided by 2 but not 3, color (x,y) red, if xy is an integer that divided by 3 but not 2, color (x,y) blue. Determine whether there is a line segment in the plane such that it contains exactly 2017 blue points and 58 red points.
2009 Brazil Team Selection Test, 3
In the coordinate plane consider the set $ S$ of all points with integer coordinates. For a positive integer $ k$, two distinct points $A$, $ B\in S$ will be called $ k$-[i]friends[/i] if there is a point $ C\in S$ such that the area of the triangle $ ABC$ is equal to $ k$. A set $ T\subset S$ will be called $ k$-[i]clique[/i] if every two points in $ T$ are $ k$-friends. Find the least positive integer $ k$ for which there exits a $ k$-clique with more than 200 elements.
[i]Proposed by Jorge Tipe, Peru[/i]
1990 Bundeswettbewerb Mathematik, 2
Let $A(n)$ be the least possible number of distinct points in the plane with the following property: For every $k = 1,2,...,n$ there is a line containing precisely $k$ of these points. Show that $A(n) =\left[\frac{n+1}{2}\right] \left[\frac{n+2}{2}\right]$
2019 CMIMC, 7
Consider the set $L$ of binary strings of length less than or equal to $9$, and for a string $w$ define $w^{+}$ to be the set $\{w,w^2,w^3,\ldots\}$ where $w^k$ represents $w$ concatenated to itself $k$ times. How many ways are there to pick an ordered pair of (not necessarily distinct) elements $x,y\in L$ such that $x^{+}\cap y^{+}\neq \varnothing$?
2012 Bosnia And Herzegovina - Regional Olympiad, 2
On football toornament there were $4$ teams participating. Every team played exactly one match with every other team. For the win, winner gets $3$ points, while if draw both teams get $1$ point. If at the end of tournament every team had different number of points and first place team had $6$ points, find the points of other teams
LMT Guts Rounds, 2013
[u]Round 9[/u]
[b]p25.[/b] Define a hilly number to be a number with distinct digits such that when its digits are read from left to right, they strictly increase, then strictly decrease. For example, $483$ and $1230$ are both hilly numbers, but $123$ and $1212$ are not. How many $5$-digit hilly numbers are there?
[b]p26.[/b] Triangle ABC has $AB = 4$ and $AC = 6$. Let the intersection of the angle bisector of $\angle BAC$ and $\overline{BC}$ be $D$ and the foot of the perpendicular from C to the angle bisector of $\angle BAC$ be $E$. What is the value of $AD/AE$?
[b]p27.[/b] Given that $(7+ 4\sqrt3)^x+ (7-4\sqrt3)^x = 10$, find all possible values of $(7+ 4\sqrt3)^x-(7-4\sqrt3)^x$.
[u]Round 10[/u]
Note: In this set, the answers for each problem rely on answers to the other problems.
[b]p28.[/b] Let X be the answer to question $29$. If $5A + 5B = 5X - 8$ and $A^2 + AB - 2B^2 = 0$, find the sum of all possible values of $A$.
[b]p29.[/b] Let $W$ be the answer to question $28$. In isosceles trapezoid $ABCD$ with $\overline{AB} \parallel \overline{CD}$, line segments $ \overline{AC}$ and $ \overline{BD}$ split each other in the ratio $2 : 1$. Given that the length of $BC$ is $W$, what is the greatest possible length of $\overline{AB}$ for which there is only one trapezoid $ABCD$ satisfying the given conditions?
[b]p30.[/b] Let $W$ be the answer to question $28$ and $X$ be the answer to question $29$. For what value of $Z$ is $ |Z - X| + |Z - W| - |W + X - Z|$ at a minimum?
[u]Round 11[/u]
[b]p31.[/b] Peijin wants to draw the horizon of Yellowstone Park, but he forgot what it looked like. He remembers that the horizon was a string of $10$ segments, each one either increasing with slope $1$, remaining flat, or decreasing with slope $1$. Given that the horizon never dipped more than $1$ unit below or rose more than $1$ unit above the starting point and that it returned to the starting elevation, how many possible pictures can Peijin draw?
[b]p32.[/b] DNA sequences are long strings of $A, T, C$, and $G$, called base pairs. (e.g. AATGCA is a DNA sequence of 6 base pairs). A DNA sequence is called stunningly nondescript if it contains each of A, T, C, G, in some order, in 4 consecutive base pairs somewhere in the sequence. Find the number of stunningly nondescript DNA sequences of 6 base pairs (the example above is to be included in this count).
[b]p33.[/b] Given variables s, t that satisfy $(3 + 2s + 3t)^2 + (7 - 2t)^2 + (5 - 2s - t)^2 = 83$, find the minimum possible value of $(-5 + 2s + 3t) ^2 + (3 - 2t)^2 + (2 - 2s - t)^2$.
[u]Round 12[/u]
[b]p34.[/b] Let $f(n)$ be the number of powers of 2 with n digits. For how many values of n from $1$ to $2013$ inclusive does $f(n) = 3$? If your answer is N and the actual answer is $C$, then the score you will receive on this problem is $max\{15 - \frac{|N-C|}{26039} , 0\}$, rounded to the nearest integer.
[b]p35.[/b] How many total characters are there in the source files for the LMT $2013$ problems? If your answer is $N$ and the actual answer is $C$, then the score you receive on this problem is $max\{15 - \frac{|N - C|}{1337}, 0\}$, rounded to the nearest integer.
[b]p36.[/b] Write down two distinct integers between $0$ and $300$, inclusive. Let $S$ be the collection of everyone’s guesses. Let x be the smallest nonnegative difference between one of your guesses and another guess in $S$ (possibly your other guess). Your team will be awarded $min(15, x)$ points.
PS. You should use hide for answers.Rounds 1-4 are [url=https://artofproblemsolving.com/community/c3h3134546p28406927]here [/url] and 6-8 [url=https://artofproblemsolving.com/community/c3h3136014p28427163]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2005 Indonesia MO, 8
There are $ 90$ contestants in a mathematics competition. Each contestant gets acquainted with at least $ 60$ other contestants. One of the contestants, Amin, state that at least four contestants have the same number of new friends. Prove or disprove his statement.
2020 Durer Math Competition Finals, 15
In a movie theatre there are $6$ VIP chairs labelled from $1$ to $6$. We call a few consecutive vacant chairs a block. In the online VIP seat reservation process the reservation of a seat consists of two steps: in the first step we choose the block, in the second step we reserve the first, last or middle seat (in case of a block of size even this means the middle chair with the smaller number) of that block. (In the second step the online system offers the three possibilities even though they might mean the same seat.) Benedek reserved all seats at some screeining. In how many ways could he do it if we distinguish two reservation if there were a step when Benedek chose a different option?
For instance, if the seats $ 1$ and $6$ are reserved, then there are two blocks, the first one consists of the seat $ 1$, the second block consists of the seats $3, 4$ and $5$. Two reservation orders are different if there is a chair that was reserved in a different step, or there is a chair that was reserved with different option (first, last or middle). So if there were $2$ VIP chairs, then the answer would have been $9$.
2017 Harvard-MIT Mathematics Tournament, 14
Mrs. Toad has a class of $2017$ students, with unhappiness levels $1, 2, \dots, 2017$ respectively. Today in class, there is a group project and Mrs. Toad wants to split the class in exactly $15$ groups. The unhappiness level of a group is the average unhappiness of its members, and the unhappiness of the class is the sum of the unhappiness of all $15$ groups. What's the minimum unhappiness of the class Mrs. Toad can achieve by splitting the class into $15$ groups?
2008 China Team Selection Test, 3
Determine the greatest positive integer $ n$ such that in three-dimensional space, there exist n points $ P_{1},P_{2},\cdots,P_{n},$ among $ n$ points no three points are collinear, and for arbitary $ 1\leq i < j < k\leq n$, $ P_{i}P_{j}P_{k}$ isn't obtuse triangle.
2018 Switzerland - Final Round, 1
The cells of an $8\times 8$ chessboard are all coloured in white. A move consists in inverting the colours of a rectangle $1 \times 3$ horizontal or vertical (the white cells become black and conversely). Is it possible to colour all the cells of the chessboard in black in a finite number of moves ?
EMCC Accuracy Rounds, 2023
[b]p1.[/b] Minseo writes all of the divisors of $1,000,000$ on the whiteboard. She then erases all of the numbers which have the digit $0$ in their decimal representation. How many numbers are left?
[b]p2.[/b] $n < 100$ is an odd integer and can be expressed as $3k - 2$ and $5m + 1$ for positive integers $k$ and $m$. Find the sum of all possible values of $n$.
[b]p3.[/b] Mr. Pascal is a math teacher who has the license plate $SQUARE$. However, at night, a naughty student scrambles Mr. Pascal’s license plate to $UQRSEA$. The math teacher luckily has an unscrambler that is able to move license plate letters. The unscrambler swaps the positions of any two adjacent letters. What is the minimum number of times Mr. Pascal must use the unscrambler to restore his original license plate?
[b]p4.[/b] Find the number of distinct real numbers $x$ which satisfy $x^2 + 4 \lfloor x \rfloor + 4 = 0$.
[b]p5.[/b] All four faces of tetrahedron $ABCD$ are acute. The distances from point $D$ to $\overline{BC}$, $\overline{CA}$ and $\overline{AB}$ are all $7$, and the distance from point $D$ to face $ABC$ is $5$. Given that the volume of tetrahedron $ABCD$ is $60$, find the surface area of tetrahedron $ABCD$.
[b]p6.[/b] Forrest has a rectangular piece of paper with a width of $5$ inches and a height of $3$ inches. He wants to cut the paper into five rectangular pieces, each of which has a width of $1$ inch and a distinct integer height between $1$ and $5$ inches, inclusive. How many ways can he do so? (One possible way is shown below.)
[img]https://cdn.artofproblemsolving.com/attachments/7/3/205afe28276f9df1c6bcb45fff6313c6c7250f.png[/img]
[b]p7.[/b] In convex quadrilateral $ABCD$, $AB = CD = 5$, $BC = 4$ and $AD = 8$. If diagonal $\overline{AC}$ bisects $\angle DAB$, find the area of quadrilateral $ABCD$.
[b]p8.[/b] Let $x$ and $y$ be real numbers such that $$x + y = x^3 + y^3 + \frac34 = \frac{1}{8xy}.$$ Find the value of $x + y$.
[b]p9.[/b] Four blue squares and four red parallelograms are joined edge-to-edge alternately to form a ring of quadrilateral as shown. The areas of three of the red parallelograms are shown. Find the area of the fourth red parallelogram.
[img]https://cdn.artofproblemsolving.com/attachments/9/c/911a8d53604f639e2f9bd72b59c7f50e43e258.png[/img]
[b]p10.[/b] Define $f(x, n) =\sum_{d|n}\frac{x^n-1}{x^d-1}$ . For how many integers $n$ between $1$ and $2023$ inclusive is $f(3, n)$ an odd integer?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2021 HMNT, 4
Find the number of $10$-digit numbers $\overline{a_1a_2... a_{10}}$ which are multiples of $11$ such that the digits are non-increasing from left to right, i.e. $a_i \ge a_{i+1}$ for each $1 \le i \le 9$.
MOAA Gunga Bowls, 2019
[u]Set 6[/u]
[b]p16.[/b] Let $n! = n \times (n - 1) \times ... \times 2 \times 1$. Find the maximum positive integer value of $x$ such that the quotient $\frac{160!}{160^x}$ is an integer.
[b]p17.[/b] Let $\vartriangle OAB$ be a triangle with $\angle OAB = 90^o$ . Draw points $C, D, E, F, G$ in its plane so that $$\vartriangle OAB \sim \vartriangle OBC \sim \vartriangle OCD \sim \vartriangle ODE \sim \vartriangle OEF \sim \vartriangle OFG,$$ and none of these triangles overlap. If points $O, A, G$ lie on the same line, then let $x$ be the sum of all possible values of $\frac{OG}{OA }$. Then, $x$ can be expressed in the form $m/n$ for relatively prime positive integers $m, n$. Compute $m + n$.
[b]p18.[/b] Let $f(x)$ denote the least integer greater than or equal to $x^{\sqrt{x}}$. Compute $f(1)+f(2)+f(3)+f(4)$.
[u]Set 7[/u]
The Fibonacci sequence $\{F_n\}$ is defined as $F_0 = 0$, $F_1 = 1$ and $F_{n+2} = F_{n+1} + F_n$ for all integers $n \ge 0$.
[b]p19.[/b] Find the least odd prime factor of $(F_3)^{20} + (F_4)^{20} + (F_5)^{20}$.
[b]p20.[/b] Let
$$S = \frac{1}{F_3F_5}+\frac{1}{F_4F_6}+\frac{1}{F_5F_7}+\frac{1}{F_6F_8}+...$$ Compute $420S$.
[b]p21.[/b] Consider the number $$Q = 0.000101020305080130210340550890144... ,$$ the decimal created by concatenating every Fibonacci number and placing a 0 right after the decimal point and between each Fibonacci number. Find the greatest integer less than or equal to $\frac{1}{Q}$.
[u]Set 8[/u]
[b]p22.[/b] In five dimensional hyperspace, consider a hypercube $C_0$ of side length $2$. Around it, circumscribe a hypersphere $S_0$, so all $32$ vertices of $C_0$ are on the surface of $S_0$. Around $S_0$, circumscribe a hypercube $C_1$, so that $S_0$ is tangent to all hyperfaces of $C_1$. Continue in this same fashion for $S_1$, $C_2$, $S_2$, and so on. Find the side length of $C_4$.
[b]p23.[/b] Suppose $\vartriangle ABC$ satisfies $AC = 10\sqrt2$, $BC = 15$, $\angle C = 45^o$. Let $D, E, F$ be the feet of the altitudes in $\vartriangle ABC$, and let $U, V , W$ be the points where the incircle of $\vartriangle DEF$ is tangent to the sides of $\vartriangle DEF$. Find the area of $\vartriangle UVW$.
[b]p24.[/b] A polynomial $P(x)$ is called spicy if all of its coefficients are nonnegative integers less than $9$. How many spicy polynomials satisfy $P(3) = 2019$?
[i]The next set will consist of three estimation problems.[/i]
[u]Set 9[/u]
Points will be awarded based on the formulae below. Answers are nonnegative integers that may exceed $1,000,000$.
[b]p25.[/b] Suppose a circle of radius $20192019$ has area $A$. Let s be the side length of a square with area $A$. Compute the greatest integer less than or equal to $s$.
If $n$ is the correct answer, an estimate of $e$ gives $\max \{ 0, \left\lfloor 1030 ( min \{ \frac{n}{e},\frac{e}{n}\}^{18}\right\rfloor -1000 \}$ points.
[b]p26.[/b] Given a $50 \times 50$ grid of squares, initially all white, define an operation as picking a square and coloring it and the four squares horizontally or vertically adjacent to it blue, if they exist. If a square is already colored blue, it will remain blue if colored again. What is the minimum number of operations necessary to color the entire grid blue?
If $n$ is the correct answer, an estimate of $e$ gives $\left\lfloor \frac{180}{5|n-e|+6}\right\rfloor$ points.
[b]p27.[/b] The sphere packing problem asks what percent of space can be filled with equally sized spheres without overlap. In three dimensions, the answer is $\frac{\pi}{3\sqrt2} \approx 74.05\%$ of space (confirmed as recently as $2017!$), so we say that the packing density of spheres in three dimensions is about $0.74$. In fact, mathematicians have found optimal packing densities for certain other dimensions as well, one being eight-dimensional space. Let d be the packing density of eight-dimensional hyperspheres in eightdimensional hyperspace. Compute the greatest integer less than $10^8 \times d$.
If $n$ is the correct answer, an estimate of e gives $\max \left\{ \lfloor 30-10^{-5}|n - e|\rfloor, 0 \right\}$ points.
PS. You had better use hide for answers. First sets have be posted [url=https://artofproblemsolving.com/community/c4h2777330p24370124]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2023 Ukraine National Mathematical Olympiad, 11.8
There are $2024$ cities in a country, every two of which are bidirectionally connected by exactly one of three modes of transportation - rail, air, or road. A tourist has arrived in this country and has the entire transportation scheme. He chooses a travel ticket for one of the modes of transportation and the city from which he starts his trip. He wants to visit as many cities as possible, but using only the ticket for the specified type of transportation. What is the largest $k$ for which the tourist will always be able to visit at least $k$ cities? During the route, he can return to the cities he has already visited.
[i]Proposed by Bogdan Rublov[/i]
2009 China Team Selection Test, 2
Find all the pairs of integers $ (a,b)$ satisfying $ ab(a \minus{} b)\not \equal{} 0$ such that there exists a subset $ Z_{0}$ of set of integers $ Z,$ for any integer $ n$, exactly one among three integers $ n,n \plus{} a,n \plus{} b$ belongs to $ Z_{0}$.
2019 IMO Shortlist, C2
You are given a set of $n$ blocks, each weighing at least $1$; their total weight is $2n$. Prove that for every real number $r$ with $0 \leq r \leq 2n-2$ you can choose a subset of the blocks whose total weight is at least $r$ but at most $r + 2$.
1968 All Soviet Union Mathematical Olympiad, 105
a) The fields of the square table $4\times 4$ are filled with the "+" or "-" signs. You are allowed to change the signs simultaneously in the whole row, column, or diagonal to the opposite sign. That means, for example, that You can change the sign in the corner square, because it makes a diagonal itself. Prove that you will never manage to obtain a table containing pluses only.
b) The fields of the square table $8\times 8$ are filled with the "+" or signs except one non-corner field with "-". You are allowed to change the signs simultaneously in the whole row, column, or diagonal to the opposite sign. That means, for example, that You can change the sign in the corner field, because it makes a diagonal itself. Prove that you will never manage to obtain a table containing pluses only.
2020 Brazil Cono Sur TST, 3
Between the states of Alinaesquina and Berlinda, each road connects one city of Alinaesquina to one city of Berlinda. All the roads are in two-ways, and between any two cities, it is possible to travel from one to the other, using only these (possibly more than one) roads. Furthermore, it is known that, from any city of anyone of the two states, the same number of $k$ roads are going out. We know that $k\geq 2$. Prove that governments of the states can close anyone of the roads, and there will still be a route (possibly through several roads) between any two cities.
2001 Balkan MO, 4
A cube side 3 is divided into 27 unit cubes. The unit cubes are arbitrarily labeled 1 to 27 (each cube is given a different number). A move consists of swapping the cube labeled 27 with one of its 6 neighbours. Is it possible to find a finite sequence of moves at the end of which cube 27 is in its original position, but cube $n$ has moved to the position originally occupied by $27-n$ (for each $n = 1, 2, \ldots , 26$)?
1994 Turkey MO (2nd round), 3
Let $n$ blue lines, no two of which are parallel and no three concurrent, be drawn on a plane. An intersection of two blue lines is called a blue point. Through any two blue points that have not already been joined by a blue line, a red line is drawn. An intersection of two red lines is called a red point, and an intersection of red line and a blue line is called a purple point. What is the maximum possible number of purple points?
2023 JBMO TST - Turkey, 4
Initially, Aslı distributes $1000$ balls to $30$ boxes as she wishes. After that, Aslı and Zehra make alternated moves which consists of taking a ball in any wanted box starting with Aslı. One who takes the last ball from any box takes that box to herself. What is the maximum number of boxes can Aslı guarantee to take herself regardless of Zehra's moves?
1988 China Team Selection Test, 4
Let $k \in \mathbb{N},$ $S_k = \{(a, b) | a, b = 1, 2, \ldots, k \}.$ Any two elements $(a, b)$, $(c, d)$ $\in S_k$ are called "undistinguishing" in $S_k$ if $a - c \equiv 0$ or $\pm 1 \pmod{k}$ and $b - d \equiv 0$ or $\pm 1 \pmod{k}$; otherwise, we call them "distinguishing". For example, $(1, 1)$ and $(2, 5)$ are undistinguishing in $S_5$. Considering the subset $A$ of $S_k$ such that the elements of $A$ are pairwise distinguishing. Let $r_k$ be the maximum possible number of elements of $A$.
(i) Find $r_5$.
(ii) Find $r_7$.
(iii) Find $r_k$ for $k \in \mathbb{N}$.
1984 Czech And Slovak Olympiad IIIA, 5
Find all natural numbers $n$ for which there exists a convex polyhedron with $n$ edges, with exactly one vertex having four edges and all other vertices having $3$ edges.
1992 Tournament Of Towns, (328) 5
$50$ silver coins ordered by weight and $51$ gold coins also ordered by weight are given. All coins have different weights. You are given a balance to compare weights of any two coins. How can you find the “middle” coin (that occupying the $51$st place in weight among all $101$ coins) using $7$ weighings?
(A. Andjans)