Found problems: 619
2024 JHMT HS, 10
One triangular face $F$ of a tetrahedron $\mathcal{T}$ has side lengths $\sqrt{5}$, $\sqrt{65}$, and $2\sqrt{17}$. The other three faces of $\mathcal{T}$ are right triangles whose hypotenuses coincide with the sides of $F$. There exists a sphere inside $\mathcal{T}$ tangent to all four of its faces. Compute the radius of this sphere.
2008 Sharygin Geometry Olympiad, 5
(N.Avilov) Can the surface of a regular tetrahedron be glued over with equal regular hexagons?
2014 USAMTS Problems, 4:
A point $P$ in the interior of a convex polyhedron in Euclidean space is called a [i]pivot point[/i] of the polyhedron if every line through $P$ contains exactly $0$ or $2$ vertices of the polyhedron. Determine, with proof, the maximum number of pivot points that a polyhedron can contain.
2017 Yasinsky Geometry Olympiad, 2
In the tetrahedron $DABC, AB=BC, \angle DBC =\angle DBA$. Prove that $AC \perp DB$.
1971 Czech and Slovak Olympiad III A, 6
Let a tetrahedron $ABCD$ and its inner point $O$ be given. For any edge $e$ of $ABCD$ consider the segment $f(e)$ containing $O$ such that $f(e)\parallel e$ and the endpoints of $f(e)$ lie on the faces of the tetrahedron. Show that \[\sum_{e\text{ edge}}\,\frac{\,f(e)\,}{e}=3.\]
2017 Simon Marais Mathematical Competition, B1
Maryam labels each vertex of a tetrahedron with the sum of the lengths of the three edges meeting at that vertex.
She then observes that the labels at the four vertices of the tetrahedron are all equal. For each vertex of the tetrahedron, prove that the lengths of the three edges meeting at that vertex are the three side lengths of a triangle.
1977 Polish MO Finals, 1
Let $ABCD$ be a tetrahedron with $\angle BAD = 60^{\cdot}$, $\angle BAC = 40^{\cdot}$, $\angle ABD = 80^{\cdot}$, $\angle ABC = 70^{\cdot}$. Prove that the lines $AB$ and $CD$ are perpendicular.
1993 Austrian-Polish Competition, 2
Consider all tetrahedra $ABCD$ in which the sum of the areas of the faces $ABD, ACD, BCD$ does not exceed $1$. Among such tetrahedra, find those with the maximum volume.
2011 Today's Calculation Of Integral, 759
Given a regular tetrahedron $PQRS$ with side length $d$. Find the volume of the solid generated by a rotation around the line passing through $P$ and the midpoint $M$ of $QR$.
2010 Paenza, 6
In space are given two tetrahedra with the same barycenter such that one of them contains the other.
For each tetrahedron, we consider the octahedron whose vertices are the midpoints of the tetrahedron's edges.
Prove that one of this octahedra contains the other.
1973 Bulgaria National Olympiad, Problem 6
In the tetrahedron $ABCD$, $E$ and $F$ are the midpoints of $BC$ and $AD$, $G$ is the midpoint of the segment $EF$. Construct a plane through $G$ intersecting the segments $AB$, $AC$, $AD$ in the points $M,N,P$ respectively in such a way that the sum of the volumes of the tetrahedrons $BMNP$, $CMNP$ and $DMNP$ to be minimal.
[i]H. Lesov[/i]
1986 IMO Longlists, 30
Prove that a convex polyhedron all of whose faces are equilateral triangles has at most $30$ edges.
1964 IMO, 6
In tetrahedron $ABCD$, vertex $D$ is connected with $D_0$, the centrod if $\triangle ABC$. Line parallel to $DD_0$ are drawn through $A,B$ and $C$. These lines intersect the planes $BCD, CAD$ and $ABD$ in points $A_2, B_1,$ and $C_1$, respectively. Prove that the volume of $ABCD$ is one third the volume of $A_1B_1C_1D_0$. Is the result if point $D_o$ is selected anywhere within $\triangle ABC$?
1993 Polish MO Finals, 3
Find out whether it is possible to determine the volume of a tetrahedron knowing the areas of its faces and its circumradius.
2003 Romania National Olympiad, 1
Let be a tetahedron $ OABC $ with $ OA\perp OB\perp OC\perp OA. $ Show that
$$ OH\le r\left( 1+\sqrt 3 \right) , $$
where $ H $ is the orthocenter of $ ABC $ and $ r $ is radius of the inscribed spere of $ OABC. $
[i]Valentin Vornicu[/i]
1961 Polish MO Finals, 3
Prove that if a plane section of a tetrahedron is a parallelogram, then half of its perimeter is contained between the length of the smallest and the length of the largest edge of the tetrahedron.
1950 Polish MO Finals, 3
Prove that if the two altitudes of a tetrahedron intersect, then the other two atltitudes intersect also.
1963 Vietnam National Olympiad, 4
The tetrahedron $ S.ABC$ has the faces $ SBC$ and $ ABC$ perpendicular. The three angles at $ S$ are all $ 60^{\circ}$ and $ SB \equal{} SC \equal{} 1$. Find the volume of the tetrahedron.
2001 AIME Problems, 12
A sphere is inscribed in the tetrahedron whose vertices are $A=(6,0,0), B=(0,4,0), C=(0,0,2),$ and $D=(0,0,0).$ The radius of the sphere is $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$
2007 AMC 12/AHSME, 20
Corners are sliced off a unit cube so that the six faces each become regular octagons. What is the total volume of the removed tetrahedra?
$ \textbf{(A)}\ \frac {5\sqrt {2} \minus{} 7}{3}\qquad \textbf{(B)}\ \frac {10 \minus{} 7\sqrt {2}}{3}\qquad \textbf{(C)}\ \frac {3 \minus{} 2\sqrt {2}}{3}\qquad \textbf{(D)}\ \frac {8\sqrt {2} \minus{} 11}{3}\qquad \textbf{(E)}\ \frac {6 \minus{} 4\sqrt {2}}{3}$
1988 All Soviet Union Mathematical Olympiad, 486
Prove that for any tetrahedron the radius of the inscribed sphere $r <\frac{ ab}{ 2(a + b)}$, where $a$ and $b$ are the lengths of any pair of opposite edges.
1976 USAMO, 4
If the sum of the lengths of the six edges of a trirectangular tetrahedron $ PABC$ (i.e., $ \angle APB \equal{} \angle BPC \equal{} \angle CPA \equal{} 90^\circ$) is $ S$, determine its maximum volume.
1987 Poland - Second Round, 2
Prove that the sum of the plane angles at each of the vertices of a given tetrahedron is $ 180^{\circ} $ if and only if all its faces are congruent.
1976 Czech and Slovak Olympiad III A, 6
Consider two non-parallel half-planes $\pi,\pi'$ with the common boundary line $p.$ Four different points $A,B,C,D$ are given in the half-plane $\pi.$ Similarly, four points $A',B',C',D'\in\pi'$ are given such that $AA'\parallel BB'\parallel CC'\parallel DD'$. Moreover, none of these points lie on $p$ and the points $A,B,C,D'$ form a tetrahedron. Show that the points $A',B',C',D$ also form a tetrahedron with the same volume as $ABCD'.$
1985 Austrian-Polish Competition, 6
Let $P$ be a point inside a tetrahedron $ABCD$ and let $S_A,S_B,S_C,S_D$ be the centroids (i.e. centers of gravity) of the tetrahedra $PBCD,PCDA,PDAB,PABC$. Show that the volume of the tetrahedron $S_AS_BS_CS_D$ equals $1/64$ the volume of $ABCD$.