This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 619

1968 Poland - Second Round, 5

The tetrahedrons $ ABCD $ and $ A_1B_1C_1D_1 $ are situated so that the midpoints of the segments $ AA_1 $, $ BB_1 $, $ CC_1 $, $ DD_1 $ are the centroids of the triangles $BCD$, $ ACD $, $ A B D $ and $ ABC $, respectively. What is the ratio of the volumes of these tetrahedrons?

1991 Turkey Team Selection Test, 3

Let $U$ be the sum of lengths of sides of a tetrahedron (triangular pyramid) with vertices $O,A,B,C$. Let $V$ be the volume of the convex shape whose vertices are the midpoints of the sides of the tetrahedron. Show that $V\leq \frac{(U-|OA|-|BC| )(U-|OB|-|AC| )(U-|OC|-|AB| )}{(2^{7} \cdot 3)}$.

2012 Kyoto University Entry Examination, 2

Given a regular tetrahedron $OABC$. Take points $P,\ Q,\ R$ on the sides $OA,\ OB,\ OC$ respectively. Note that $P,\ Q,\ R$ are different from the vertices of the tetrahedron $OABC$. If $\triangle{PQR}$ is an equilateral triangle, then prove that three sides $PQ,\ QR,\ RP$ are pararell to three sides $AB,\ BC,\ CA$ respectively. 30 points

2018 Moscow Mathematical Olympiad, 2

There is tetrahedron and square pyramid, both with all edges equal $1$. Show how to cut them into several parts and glue together from these parts a cube (without voids and cracks, all parts must be used)

2006 Kazakhstan National Olympiad, 6

In the tetrahedron $ ABCD $ from the vertex $ A $, the perpendiculars $ AB '$, $ AC' $ are drawn, $ AD '$ on planes dividing dihedral angles at edges $ CD $, $ BD $, $ BC $ in half. Prove that the plane $ (B'C'D ') $ is parallel to the plane $ (BCD) $.

1993 Baltic Way, 20

Let $ \mathcal Q$ be a unit cube. We say that a tetrahedron is [b]good[/b] if all its edges are equal and all of its vertices lie on the boundary of $ \mathcal Q$. Find all possible volumes of good tetrahedra.

2013 Waseda University Entrance Examination, 5

Given a plane $P$ in space. For a figure $A$, call orthogonal projection the whole of points of intersection between the perpendicular drawn from each point in $A$ and $P$. Answer the following questions. (1) Let a plane $Q$ intersects with the plane $P$ by angle $\theta\ \left(0<\theta <\frac{\pi}{2}\right)$ between the planes, that is to say, the angles between two lines, is $\theta$, which can be generated by cuttng $P,\ Q$ by a plane which is perpendicular to the line of intersection of $P$ and $Q$. Find the maximum and minimum length of the orthogonal projection of the line segment in length 1 on $Q$ on to $P$.. (2) Consider $Q$ in (1). Find the area of the orthogonal projection of a equilateral triangle on $Q$ with side length 1 onto $P$. (3) What's the shape of the orthogonal projection $T'$ of a regular tetrahedron $T$ with side length 1 on to $P'$, then find the max area of $T'$.

1990 IMO Shortlist, 19

Let $ P$ be a point inside a regular tetrahedron $ T$ of unit volume. The four planes passing through $ P$ and parallel to the faces of $ T$ partition $ T$ into 14 pieces. Let $ f(P)$ be the joint volume of those pieces that are neither a tetrahedron nor a parallelepiped (i.e., pieces adjacent to an edge but not to a vertex). Find the exact bounds for $ f(P)$ as $ P$ varies over $ T.$

1980 USAMO, 4

The inscribed sphere of a given tetrahedron touches all four faces of the tetrahedron at their respective centroids. Prove that the tetrahedron is regular.

2005 China Girls Math Olympiad, 3

Determine if there exists a convex polyhedron such that (1) it has 12 edges, 6 faces and 8 vertices; (2) it has 4 faces with each pair of them sharing a common edge of the polyhedron.

1949-56 Chisinau City MO, 62

On two intersecting lines $\ell_1$ and $\ell_2$, segments $AB$ and $CD$ of a given length are selected, respectively. Prove that the volume of the tetrahedron $ABCD$ does not depend on the position of the segments $AB$ and $CD$ on the lines $\ell_1$ and $\ell_2$.

2004 District Olympiad, 3

On the tetrahedron $ ABCD $ make the notation $ M,N,P,Q, $ for the midpoints of $ AB,CD,AC, $ respectively, $ BD. $ Additionally, we know that $ MN $ is the common perpendicular of $ AB,CD, $ and $ PQ $ is the common perpendicular of $ AC,BD. $ Show that $ AB=CD, BC=DA, AC=BD. $

1968 Spain Mathematical Olympiad, 6

Check and justify , if in every tetrahedron are concurrent: a) The perpendiculars to the faces at their circumcenters. b) The perpendiculars to the faces at their orthocenters. c) The perpendiculars to the faces at their incenters. If so, characterize with some simple geometric property the point in that attend If not, show an example that clearly shows the not concurrency.

1990 IMO Longlists, 63

Let $ P$ be a point inside a regular tetrahedron $ T$ of unit volume. The four planes passing through $ P$ and parallel to the faces of $ T$ partition $ T$ into 14 pieces. Let $ f(P)$ be the joint volume of those pieces that are neither a tetrahedron nor a parallelepiped (i.e., pieces adjacent to an edge but not to a vertex). Find the exact bounds for $ f(P)$ as $ P$ varies over $ T.$

2006 China Team Selection Test, 1

Let $K$ and $M$ be points on the side $AB$ of a triangle $\triangle{ABC}$, and let $L$ and $N$ be points on the side $AC$. The point $K$ is between $M$ and $B$, and the point $L$ is between $N$ and $C$. If $\frac{BK}{KM}=\frac{CL}{LN}$, then prove that the orthocentres of the triangles $\triangle{ABC}$, $\triangle{AKL}$ and $\triangle{AMN}$ lie on one line.

1955 Miklós Schweitzer, 8

[b]8.[/b] Show that on any tetrahedron there can be found three acute bihedral angles such that the faces including these angles count among them all faces of tetrahedron. [b](G. 10)[/b]

2009 Princeton University Math Competition, 6

Consider the solid with 4 triangles and 4 regular hexagons as faces, where each triangle borders 3 hexagons, and all the sides are of length 1. Compute the [i]square[/i] of the volume of the solid. Express your result in reduced fraction and concatenate the numerator with the denominator (e.g., if you think that the square is $\frac{1734}{274}$, then you would submit 1734274).

1977 IMO Longlists, 48

The intersection of a plane with a regular tetrahedron with edge $a$ is a quadrilateral with perimeter $P.$ Prove that $2a \leq P \leq 3a.$

2010 Paenza, 6

In space are given two tetrahedra with the same barycenter such that one of them contains the other. For each tetrahedron, we consider the octahedron whose vertices are the midpoints of the tetrahedron's edges. Prove that one of this octahedra contains the other.

2018 Yasinsky Geometry Olympiad, 3

In the tetrahedron $SABC$, points $E, F, K, L$ are the midpoints of the sides $SA , BC, AC, SB$ respectively, . The lengths of the segments $EF$ and $KL$ are equal to $11 cm$ and $13 cm$ respectively, and the length of the segment $AB$ equals to $18 cm$. Find the length of the side $SC$ of the tetrahedron.

2015 Sharygin Geometry Olympiad, P23

A tetrahedron $ABCD$ is given. The incircles of triangles $ ABC$ and $ABD$ with centers $O_1, O_2$, touch $AB$ at points $T_1, T_2$. The plane $\pi_{AB}$ passing through the midpoint of $T_1T_2$ is perpendicular to $O_1O_2$. The planes $\pi_{AC},\pi_{BC}, \pi_{AD}, \pi_{BD}, \pi_{CD}$ are defined similarly. Prove that these six planes have a common point.

1988 IMO Shortlist, 6

In a given tedrahedron $ ABCD$ let $ K$ and $ L$ be the centres of edges $ AB$ and $ CD$ respectively. Prove that every plane that contains the line $ KL$ divides the tedrahedron into two parts of equal volume.

1967 IMO, 2

Prove that a tetrahedron with just one edge length greater than $1$ has volume at most $ \frac{1}{8}.$

2019 Tournament Of Towns, 5

The orthogonal projection of a tetrahedron onto a plane containing one of its faces is a trapezoid of area $1$, which has only one pair of parallel sides. a) Is it possible that the orthogonal projection of this tetrahedron onto a plane containing another its face is a square of area $1$? b) The same question for a square of area $1/2019$. (Mikhail Evdokimov)

1979 Canada National Olympiad, 2

It is known in Euclidean geometry that the sum of the angles of a triangle is constant. Prove, however, that the sum of the dihedral angles of a tetrahedron is not constant.