Found problems: 14842
2022 JHMT HS, 4
For a nonempty set $A$ of integers, let $\mathrm{range} \, A=\max A-\min A$. Find the number of subsets $S$ of
\[ \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \]
such that $\mathrm{range} \, S$ is an element of $S$.
2023 Junior Balkan Team Selection Tests - Moldova, 4
On the board there are three real numbers $(a,b,c)$. During a $procedure$ the numbers are erased and in their place another three numbers a written, either $(c,b,a)$ or every time a nonzero real number $ d $ is chosen and the numbers $(a, 2ad+b, ad^2+bd+c)$ are written.
1) If we start with $(1,-2,-1)$ written on the board, can we have the numbers $(2,0,-1)$ on the board after a finite number of procedures?
2) If we start with $(1,-2,-1)$ written on the board, can we have the numbers $(2,-1,-1)$ on the board after a finite number of procedures?
2019 India IMO Training Camp, P3
Let $k$ be a positive integer. The organising commitee of a tennis tournament is to schedule the matches for $2k$ players so that every two players play once, each day exactly one match is played, and each player arrives to the tournament site the day of his first match, and departs the day of his last match. For every day a player is present on the tournament, the committee has to pay $1$ coin to the hotel. The organisers want to design the schedule so as to minimise the total cost of all players' stays. Determine this minimum cost.
2014 Korea National Olympiad, 4
There is a city with $n$ metro stations, each located at a vertex of a regular n-polygon. Metro Line 1 is a line which only connects two non-neighboring stations $A$ and $B$. Metro Line 2 is a cyclic line which passes through all the stations in a shape of regular n-polygon. For each line metro can run in any direction, and $A$ and $B$ are the stations which one can transfer into other line. The line between two neighboring stations is called 'metro interval'. For each station there is one stationmaster, and there are at least one female stationmaster and one male stationmaster. If $n$ is odd, prove that for any integer $k$ $(0<k<n)$ there is a path that starts from a station with a male stationmaster and ends at a station with a female stationmaster, passing through $k$ metro intervals.
2008 Bosnia and Herzegovina Junior BMO TST, 4
On circle are $ 2008$ blue and $ 1$ red point(s) given. Are there more polygons which have a red point or those which dont have it??
DMM Individual Rounds, 1998 Tie
[b]p1A[/b] Positive reals $x$, $y$, and $z$ are such that $x/y +y/x = 7$ and $y/z +z/y = 7$. There are two possible values for $z/x + x/z;$ find the greater value.
[b]p1B[/b] Real values $x$ and $y$ are such that $x+y = 2$ and $x^3+y^3 = 3$. Find $x^2+y^2$.
[b]p2[/b] Set $A = \{5, 6, 8, 13, 20, 22, 33, 42\}$. Let $\sum S$ denote the sum of the members of $S$; then $\sum A = 149$. Find the number of (not necessarily proper) subsets $B$ of $A$ for which $\sum B \ge 75$.
[b]p3[/b] $99$ dots are evenly spaced around a circle. Call two of these dots ”close” if they have $0$, $1$, or $2$ dots between them on the circle. We wish to color all $99$ dots so that any two dots which are close are colored differently. How many such colorings are possible using no more than $4$ different colors?
[b]p4[/b] Given a $9 \times 9$ grid of points, count the number of nondegenerate squares that can be drawn whose vertices are in the grid and whose center is the middle point of the grid.
PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2021 Peru EGMO TST, 4
There are $300$ apples in a table and the heaviest apple is [b]not[/b] heavier than three times the weight of the lightest apple. Prove that the apples can be splitted in sets of $4$ elements such that [b]no[/b] set is heavier than $\frac{3}{2}$ times the weight of any other set.
VMEO III 2006, 12.2
A complete graph of $n$ vertices is a set of $n$ vertices and those vertices are connected in pairs by edges. Suppose the graph has $n$ vertices $A_1, A_2, ..., A_n$, the cycle is a set of edges of the form $A_{i_1}A_{i_2}, A_{i_2}A_{i_3},..., A_{i_m}A_{i_1}$ with $i_1, i_2, ..., i_m \in {1, 2, ..., n}$ double one different.
We call $m$ the length of this cycle. Find the smallest positive integer$ n$ such that for every way of coloring all edges of a complete graph of $n$ vertices, each edge filled with one of three different colors, there is always a cycle of even length with the same color.
PS. The same problem with another wording [url=https://artofproblemsolving.com/community/c6h151391p852296]here [/url].
2005 Brazil National Olympiad, 4
We have four charged batteries, four uncharged batteries and a radio which needs two charged batteries to work.
Suppose we don't know which batteries are charged and which ones are uncharged. Find the least number of attempts sufficient to make sure the radio will work. An attempt consists in putting two batteries in the radio and check if the radio works or not.
2014 Dutch Mathematical Olympiad, 3
At a volleyball tournament, each team plays exactly once against each other team. Each game has a winning team, which gets $1$ point. The losing team gets $0$ points. Draws do not occur. In the nal ranking, only one team turns out to have the least number of points (so there is no shared last place). Moreover, each team, except for the team having the least number of points, lost exactly one game against a team that got less points in the final ranking.
a) Prove that the number of teams cannot be equal to $6$.
b) Show, by providing an example, that the number of teams could be equal to $7$.
2017 CMIMC Combinatorics, 2
Let $S$ be a subset of $\{1,2,\dots,2017\}$ such that for any two distinct elements in $S$, both their sum and product are not divisible by seven. Compute the maximum number of elements that can be in $S$.
2016 Indonesia MO, 8
Determine with proof, the number of permutations $a_1,a_2,a_3,...,a_{2016}$ of $1,2,3,...,2016$ such that the value of $|a_i-i|$ is fixed for all $i=1,2,3,...,2016$, and its value is an integer multiple of $3$.
2010 Federal Competition For Advanced Students, Part 1, 3
Given is the set $M_n=\{0, 1, 2, \ldots, n\}$ of nonnegative integers less than or equal to $n$. A subset $S$ of $M_n$ is called [i]outstanding[/i] if it is non-empty and for every natural number $k\in S$, there exists a $k$-element subset $T_k$ of $S$.
Determine the number $a(n)$ of outstanding subsets of $M_n$.
[i](41st Austrian Mathematical Olympiad, National Competition, part 1, Problem 3)[/i]
2016 Nigerian Senior MO Round 2, Problem 3
The integers $1, 2, \dots , 9$ are written on individual slips of paper and all are put into a bag. Ade chooses a slip at random, notes the integer on it, and replaces it in the bag. Bala then picks a slip at random and notes the integer written on it. Chioma then adds up Ade's and Bala's numbers. What is the probability that the unit's digit of this sum is less that $5$?
2021 IMO Shortlist, A3
For each integer $n\ge 1,$ compute the smallest possible value of \[\sum_{k=1}^{n}\left\lfloor\frac{a_k}{k}\right\rfloor\] over all permutations $(a_1,\dots,a_n)$ of $\{1,\dots,n\}.$
[i]Proposed by Shahjalal Shohag, Bangladesh[/i]
MMPC Part II 1996 - 2019, 2014
[b]p1.[/b] If $P$ is a (convex) polygon, a triangulation of $P$ is a set of line segments joining pairs of corners of $P$ in such a way that $P$ is divided into non-overlapping triangles, each of which has its corners at corners of $P$. For example, the following are different triangulations of a square.
(a) Prove that if $P$ is an $n$-gon with $n > 3$, then every triangulation of $P$ produces at least two triangles $T_1$, $T_2$ such that two of the sides of $T_i$, $i = 1$ or $2$ are also sides of $P$.
(b) Find the number of different possible triangulations of a regular hexagon.
[img]https://cdn.artofproblemsolving.com/attachments/9/d/0f760b0869fafc882f293846c05d182109fb78.png[/img]
[b]p2.[/b] There are $n$ students, $n \ge 2$, and $n + 1$ cubical cakes of volume $1$. They have the use of a knife. In order to divide the cakes equitably they make cuts with the knife. Each cut divides a cake (or a piece of a cake) into two pieces.
(a) Show that it is possible to provide each student with a volume $(n + 1)/n$ of a cake while making no more than $n - 1$ cuts.
(b) Show that for each integer $k$ with $2 \le k \le n$ it is possible to make $n - 1$ cuts in such a way that exactly $k$ of the $n$ students receive an entire (uncut) cake in their portion.
[b]p3. [/b]The vertical lines at $x = 0$, $x = \frac12$ , $x = 1$, $x = \frac32$ ,$...$ and the horizontal lines at $y = 0$, $y = \frac12$ , $y = 1$, $y = \frac32$ ,$ ...$ subdivide the first quadrant of the plane into $\frac12 \times \frac12$ square regions. Color these regions in a checkerboard fashion starting with a black region near the origin and alternating black and white both horizontally and vertically.
(a) Let $T$ be a rectangle in the first quadrant with sides parallel to the axes. If the width of $T$ is an integer, prove that $T$ has equal areas of black and white. Note that a similar argument works to show that if the height of $T$ is an integer, then $T$ has equal areas of black and white.
(b) Let $R$ be a rectangle with vertices at $(0, 0)$, $(a, 0)$, $(a, b)$, and $(0, b)$ with $a$ and $b$ positive. If $R$ has equal areas of black and white, prove that either $a$ is an integer or that $b$ is an integer.
(c) Suppose a rectangle $R$ is tiled by a finite number of rectangular tiles. That is, the rectangular tiles completely cover $R$ but intersect only along their edges. If each of the tiles has at least one integer side, prove that $R$ has at least one integer side.
[b]p4.[/b] Call a number [i]simple [/i] if it can be expressed as a product of single-digit numbers (in base ten).
(a) Find two simple numbers whose sum is $2014$ or prove that no such numbers exist.
(b) Find a simple number whose last two digits are $37$ or prove that no such number exists.
[b]p5.[/b] Consider triangles for which the angles $\alpha$, $\beta$, and $\gamma$ form an arithmetic progression. Let $a, b, c$ denote the lengths of the sides opposite $\alpha$, $\beta$, $\gamma$ , respectively. Show that for all such triangles, $$\frac{a}{c}\sin 2\gamma +\frac{c}{a} \sin 2\alpha$$ has the same value, and determine an algebraic expression for this value.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2016 Indonesia TST, 3
Let $\{E_1, E_2, \dots, E_m\}$ be a collection of sets such that $E_i \subseteq X = \{1, 2, \dots, 100\}$, $E_i \neq X$, $i = 1, 2, \dots, m$. It is known that every two elements of $X$ is contained together in exactly one $E_i$ for some $i$. Determine the minimum value of $m$.
EMCC Speed Rounds, 2018
[i]20 problems for 25 minutes.[/i]
[b]p1.[/b] What is $2018 - 3018 + 4018$?
[b]p2.[/b] What is the smallest integer greater than $100$ that is a multiple of both $6$ and $8$?
[b]p3.[/b] What positive real number can be expressed as both $\frac{b}{a}$ and $a:b$ in base $10$ for nonzero digits $a$ and $b$? Express your answer as a decimal.
[b]p4.[/b] A non-degenerate triangle has sides of lengths $1$, $2$, and $\sqrt{n}$, where $n$ is a positive integer. How many possible values of $n$ are there?
[b]p5.[/b] When three integers are added in pairs, and the results are $20$, $18$, and $x$. If all three integers sum to $31$, what is $x$?
[b]p6.[/b] A cube's volume in cubic inches is numerically equal to the sum of the lengths of all its edges, in inches. Find the surface area of the cube, in square inches.
[b]p7.[/b] A $12$ hour digital clock currently displays$ 9 : 30$. Ignoring the colon, how many times in the next hour will the clock display a palindrome (a number that reads the same forwards and backwards)?
[b]p8.[/b] SeaBay, an online grocery store, offers two different types of egg cartons. Small egg cartons contain $12$ eggs and cost $3$ dollars, and large egg cartons contain $18$ eggs and cost $4$ dollars. What is the maximum number of eggs that Farmer James can buy with $10$ dollars?
[b]p9.[/b] What is the sum of the $3$ leftmost digits of $\underbrace{999...9}_{2018\,\,\ 9' \,\,s}\times 12$?
[b]p10.[/b] Farmer James trisects the edges of a regular tetrahedron. Then, for each of the four vertices, he slices through the plane containing the three trisection points nearest to the vertex. Thus, Farmer James cuts off four smaller tetrahedra, which he throws away. How many edges does the remaining shape have?
[b]p11.[/b] Farmer James is ordering takeout from Kristy's Krispy Chicken. The base cost for the dinner is $\$14.40$, the sales tax is $6.25\%$, and delivery costs $\$3.00$ (applied after tax). How much did Farmer James pay, in dollars?
[b]p12.[/b] Quadrilateral $ABCD$ has $ \angle ABC = \angle BCD = \angle BDA = 90^o$. Given that $BC = 12$ and $CD = 9$, what is the area of $ABCD$?
[b]p13.[/b] Farmer James has $6$ cards with the numbers $1-6$ written on them. He discards a card and makes a $5$ digit number from the rest. In how many ways can he do this so that the resulting number is divisible by $6$?
[b]p14.[/b] Farmer James has a $5 \times 5$ grid of points. What is the smallest number of triangles that he may draw such that each of these $25$ points lies on the boundary of at least one triangle?
[b]p15.[/b] How many ways are there to label these $15$ squares from $1$ to $15$ such that squares $1$ and $2$ are adjacent, squares $2$ and $3$ are adjacent, and so on?
[img]https://cdn.artofproblemsolving.com/attachments/e/a/06dee288223a16fbc915f8b95c9e4f2e4e1c1f.png[/img]
[b]p16.[/b] On Farmer James's farm, there are three henhouses located at $(4, 8)$, $(-8,-4)$, $(8,-8)$. Farmer James wants to place a feeding station within the triangle formed by these three henhouses. However, if the feeding station is too close to any one henhouse, the hens in the other henhouses will complain, so Farmer James decides the feeding station cannot be within 6 units of any of the henhouses. What is the area of the region where he could possibly place the feeding station?
[b]p17.[/b] At Eggs-Eater Academy, every student attends at least one of $3$ clubs. $8$ students attend frying club, $12$ students attend scrambling club, and $20$ students attend poaching club. Additionally, $10$ students attend at least two clubs, and $3$ students attend all three clubs. How many students are there in total at Eggs-Eater Academy?
[b]p18.[/b] Let $x, y, z$ be real numbers such that $8^x = 9$, $27^y = 25$, and $125^z = 128$. What is the value of $xyz$?
[b]p19.[/b] Let $p$ be a prime number and $x, y$ be positive integers. Given that $9xy = p(p + 3x + 6y)$, find the maximum possible value of $p^2 + x^2 + y^2$.
[b]p20.[/b] Farmer James's hens like to drop eggs. Hen Hao drops $6$ eggs uniformly at random in a unit square. Farmer James then draws the smallest possible rectangle (by area), with sides parallel to the sides of the square, that contain all $6$ eggs. What is the probability that at least one of the $6$ eggs is a vertex of this rectangle?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1996 Cono Sur Olympiad, 4
The sequence $0, 1, 1, 1, 1, 1,....,1$ where have $1$ number zero and $1995$ numbers one.
If we choose two or more numbers in this sequence(but not the all $1996$ numbers) and substitute one number by arithmetic mean of the numbers selected, we obtain a new sequence with $1996$ numbers!!!
Show that, we can repeat this operation until we have all $1996$ numbers are equal
Note: It's not necessary to choose the same quantity of numbers in each operation!!!
2013 HMNT, 3
The digits $1,2,3,4, 5,6$ are randomly chosen (without replacement) to form the three-digit numbers $M = \overline{ABC}$ and $N = \overline{DEF}$. For example, we could have $M = 413$ and $N = 256$. Find the expected value of $M \cdot N$.
2021 Durer Math Competition Finals, 10
Billy owns some really energetic horses. They are hopping around on points of the plane having two integer coordinates. Each horse can make the following types of jumps. They can hop to a point obtained from their current position via a translation by vector $(15, 9)$, $(-9, 15)$, $(-15,-9)$ or $(9,-15)$.
The horses are now standing on lattice points such that no two can meet by making jumps as above. What is the maximal possible number of horses Billy can own?
2001 China Team Selection Test, 1
Let $k$ be a given integer, $3 < k \leq n$. Consider a graph $G$ with $n$ vertices satisfying the condition: for any two non-adjacent vertices $x$ and $y$ in graph $G$, the sum of their degrees must satisfy $d(x) + d(y) \geq k$. Please answer the following questions and prove your conclusions.
(1) Suppose the length of the longest path in graph $G$ is $l$ satisfying the inequality $3 \leq l < k$, does graph $G$ necessarily contain a cycle of length $l+1$? (The length of a path or cycle refers to the number of edges that make up the path or cycle.)
(2) For the case where $3 < k \leq n-1$ and graph $G$ is connected, can we determine that the length of the longest path in graph $G$, $l \geq k$?
(3) For the case where $3 < k = n-1$, is it necessary for graph $G$ to have a path of length $n-1$ (i.e., a Hamiltonian path)?
2010 Czech And Slovak Olympiad III A, 5
On the board are written numbers $1, 2,. . . , 33$. In one step we select two numbers written on the product of which is the square of the natural number, we wipe off the two chosen numbers and write the square root of their product on the board. This way we continue to the board only the numbers remain so that the product of neither of them is a square. (In one we can also wipe out two identical numbers and replace them with the same number.) Prove that at least $16$ numbers remain on the board.
2015 NZMOC Camp Selection Problems, 2
A mathematics competition had $9$ easy and $6$ difficult problems. Each of the participants in the competition solved $14$ of the $15$ problems. For each pair, consisting of an easy and a difficult problem, the number of participants who solved both those problems was recorded. The sum of these recorded numbers was $459$. How many participants were there?
LMT Guts Rounds, 2021 S
[u]Round 9[/u]
[b]p25.[/b] Let $a$, $b$, and $c$ be positive numbers with $a +b +c = 4$. If $a,b,c \le 2$ and $$M =\frac{a^3 +5a}{4a^2 +2}+\frac{b^3 +5b}{4b^2 +2}+\frac{c^3 +5c}{4c^2 +2},$$
then find the maximum possible value of $\lfloor 100M \rfloor$.
[b]p26.[/b] In $\vartriangle ABC$, $AB = 15$, $AC = 16$, and $BC = 17$. Points $E$ and $F$ are chosen on sides $AC$ and $AB$, respectively, such that $CE = 1$ and $BF = 3$. A point $D$ is chosen on side $BC$, and let the circumcircles of $\vartriangle BFD$ and $\vartriangle CED$ intersect at point $P \ne D$. Given that $\angle PEF = 30^o$, the length of segment $PF$ can be expressed as $\frac{m}{n}$ . Find $m+n$.
[b]p27.[/b] Arnold and Barnold are playing a game with a pile of sticks with Arnold starting first. Each turn, a player can either remove $7$ sticks or $13$ sticks. If there are fewer than $7$ sticks at the start of a player’s turn, then they lose. Both players play optimally. Find the largest number of sticks under $200$ where Barnold has a winning strategy
[u]Round 10[/u]
[b]p28.[/b] Let $a$, $b$, and $c$ be positive real numbers such that $\log_2(a)-2 = \log_3(b) =\log_5(c)$ and $a +b = c$. What is $a +b +c$?
[b]p29.[/b] Two points, $P(x, y)$ and $Q(-x, y)$ are selected on parabola $y = x^2$ such that $x > 0$ and the triangle formed by points $P$, $Q$, and the origin has equal area and perimeter. Find $y$.
[b]p30.[/b] $5$ families are attending a wedding. $2$ families consist of $4$ people, $2$ families consist of $3$ people, and $1$ family consists of $2$ people. A very long row of $25$ chairs is set up for the families to sit in. Given that all members of the same family sit next to each other, let the number of ways all the people can sit in the chairs such that no two members of different families sit next to each other be $n$. Find the number of factors of $n$.
[u]Round 11[/u]
[b]p31.[/b] Let polynomial $P(x) = x^3 +ax^2 +bx +c$ have (not neccessarily real) roots $r_1$, $r_2$, and $r_3$. If $2ab = a^3 -20 = 6c -21$, then the value of $|r^3_1+r^3_2+r^3_3|$ can be written as $\frac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find the value of $m+n$.
[b]p32.[/b] In acute $\vartriangle ABC$, let $H$, $I$ , $O$, and $G$ be the orthocenter, incenter, circumcenter, and centroid of $\vartriangle ABC$, respectively. Suppose that there exists a circle $\omega$ passing through $B$, $I$ , $H$, and $C$, the circumradius of $\vartriangle ABC$ is $312$, and $OG = 80$. Let $H'$, distinct from $H$, be the point on $\omega$ such that $\overline{HH'}$ is a diameter of $\omega$. Given that lines $H'O$ and $BC$ meet at a point $P$, find the length $OP$.
[b]p33.[/b] Find the number of ordered quadruples $(x, y, z,w)$ such that $0 \le x, y, z,w \le 1000$ are integers and $$x!+ y! =2^z \cdot w!$$ holds (Note: $0! = 1$).
[u]Round 12[/u]
[b]p34.[/b] Let $Z$ be the product of all the answers from the teams for this question. Estimate the number of digits of $Z$. If your estimate is $E$ and the answer is $A$, your score for this problem will be $$\max \left( 0, \lceil 15- |A-E| \rceil \right).$$ Your answer must be a positive integer.
[b]p35.[/b] Let $N$ be number of ordered pairs of positive integers $(x, y)$ such that $3x^2 -y^2 = 2$ and $x < 2^{75}$. Estimate $N$. If your estimate is $E$ and the answer is $A$, your score for this problem will be
$$\max \left( 0, \lceil 15- 2|A-E| \rceil \right).$$
[b]p36.[/b] $30$ points are located on a circle. How many ways are there to draw any number of line segments between the points such that none of the line segments overlap and none of the points are on more than one line segment? (It is possible to draw no line segments). If your estimate is $E$ and the answer is $A$, your score for this problem will be $$\max \left( 0, \left \lceil 15- \ln \frac{A}{E} \right \rceil \right).$$
PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h3166472p28814057]here [/url] and 5-8 [url=https://artofproblemsolving.com/community/c3h3166476p28814111]here[/url].. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].