This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2021 Science ON Juniors, 4

An $n\times n$ chessboard is given, where $n$ is an even positive integer. On every line, the unit squares are to be permuted, subject to the condition that the resulting table has to be symmetric with respect to its main diagonal (the diagonal from the top-left corner to the bottom-right corner). We say that a board is [i]alternative[/i] if it has at least one pair of complementary lines (two lines are complementary if the unit squares on them which lie on the same column have distinct colours). Otherwise, we call the board [i]nonalternative[/i]. For what values of $n$ do we always get from the $n\times n$ chessboard an alternative board?\\ \\ [i](Alexandru Petrescu and Andra Elena Mircea)[/i]

2023 CMIMC Combo/CS, 6

Compute the number of five-digit positive integers whose digits have exactly $30$ distinct permutations (the permutations do not necessarily have to be valid five-digit integers). [i]Proposed by David Sun[/i]

1996 Poland - Second Round, 4

Let $a_1$, $a_2$ ,..., $a_{99}$ be a sequence of digits from the set ${0,...,9}$ such that if for some $n$ ∈ $N$, $a_n = 1$, then $a_{n+1} \ne 2$, and if $a_n = 3$ then $a_{n+1} \ne 4$. Prove that there exist indices $k,l$ ∈ ${1,...,98}$ such that $a_k = a_l$ and $a_{k+1} = a_{l+1}$.

2018 APMO, 3

A collection of $n$ squares on the plane is called tri-connected if the following criteria are satisfied: (i) All the squares are congruent. (ii) If two squares have a point $P$ in common, then $P$ is a vertex of each of the squares. (iii) Each square touches exactly three other squares. How many positive integers $n$ are there with $2018\leq n \leq 3018$, such that there exists a collection of $n$ squares that is tri-connected?

2018 Iran Team Selection Test, 6

$a_1,a_2,\ldots,a_n$ is a sequence of positive integers that has at least $\frac {2n}{3}+1$ distinct numbers and each positive integer has occurred at most three times in it. Prove that there exists a permutation  $b_1,b_2,\ldots,b_n$ of $a_i $'s such that all the $n$ sums $b_i+b_{i+1}$ are distinct ($1\le i\le n $ , $b_{n+1}\equiv b_1 $) [i]Proposed by Mohsen Jamali[/i]

2024 Czech-Polish-Slovak Junior Match, 6

We are given a rectangular table with a positive integer written in each of its cells. For each cell of the table, the number in it is equal to the total number of different values in the cells that are in the same row or column (including itself). Find all tables with this property.

1978 Miklós Schweitzer, 1

Let $ \mathcal{H}$ be a family of finite subsets of an infinite set $ X$ such that every finite subset of $ X$ can be represented as the union of two disjoint sets from $ \mathcal{H}$. Prove that for every positive integer $ k$ there is a subset of $ X$ that can be represented in at least $ k$ different ways as the union of two disjoint sets from $ \mathcal{H}$. [i]P. Erdos[/i]

1998 Irish Math Olympiad, 3

$ (a)$ Prove that $ \mathbb{N}$ can be partitioned into three (mutually disjoint) sets such that, if $ m,n \in \mathbb{N}$ and $ |m\minus{}n|$ is $ 2$ or $ 5$, then $ m$ and $ n$ are in different sets. $ (b)$ Prove that $ \mathbb{N}$ can be partitioned into four sets such that, if $ m,n \in \mathbb{N}$ and $ |m\minus{}n|$ is $ 2,3,$ or $ 5$, then $ m$ and $ n$ are in different sets. Show, however, that $ \mathbb{N}$ cannot be partitioned into three sets with this property.

2005 IberoAmerican, 6

Let $n$ be a fixed positive integer. The points $A_1$, $A_2$, $\ldots$, $A_{2n}$ are on a straight line. Color each point blue or red according to the following procedure: draw $n$ pairwise disjoint circumferences, each with diameter $A_iA_j$ for some $i \neq j$ and such that every point $A_k$ belongs to exactly one circumference. Points in the same circumference must be of the same color. Determine the number of ways of coloring these $2n$ points when we vary the $n$ circumferences and the distribution of the colors.

Kvant 2020, M1387

An ant crawls clockwise along the contour of each face of a convex polyhedron. It is known that their speeds at any given time are not less than 1 mm/h. Prove that sooner or later two ants will collide. [i]Proposed by A. Klyachko[/i]

1994 Bulgaria National Olympiad, 6

Let $n$ be a positive integer and $A$ be a family of subsets of the set $\{1,2,...,n\},$ none of which contains another subset from A . Find the largest possible cardinality of $A$ .

2020 Argentina National Olympiad, 6

Let $n\ge 3$ be an integer. Lucas and Matías play a game in a regular $n$-sided polygon with a vertex marked as a trap. Initially Matías places a token at one vertex of the polygon. In each step, Lucas says a positive integer and Matías moves the token that number of vertices clockwise or counterclockwise, at his choice. a) Determine all the $n\ge 3$ such that Matías can locate the token and move it in such a way as to never fall into the trap, regardless of the numbers Lucas says. Give the strategy to Matías. b) Determine all the $n\ge 3$ such that Lucas can force Matías to fall into the trap. Give the strategy to Lucas. Note. The two players know the value of $n$ and see the polygon.

Kvant 2022, M2718

$m\times n$ grid is tiled by mosaics $2\times2$ and $1\times3$ (horizontal and vertical). Prove that the number of ways to choose a $1\times2$ rectangle (horizontal and vertical) such that one of its cells is tiled by $2\times2$ mosaic and the other cell is tiled by $1\times3$ mosaic [horizontal and vertical] is an even number.

2015 Singapore Junior Math Olympiad, 3

There are $30$ children, $a_1,a_2,...,a_{30}$ seated clockwise in a circle on the floor. The teacher walks behind the children in the clockwise direction with a box of $1000$ candies. She drops a candy behind the first child $a_1$. She then skips one child and drops a candy behind the third child, $a_3$. Now she skips two children and drops a candy behind the next child, $a_6$. She continues this way, at each stage skipping one child more than at the preceding stage before dropping a candy behind the next child. How many children will never receive a candy? Justify your answer.

1998 IberoAmerican, 2

Find the maximal possible value of $n$ such that there exist points $P_1,P_2,P_3,\ldots,P_n$ in the plane and real numbers $r_1,r_2,\ldots,r_n$ such that the distance between any two different points $P_i$ and $P_j$ is $r_i+r_j$.

2016 Brazil Team Selection Test, 4

Let $S$ be a nonempty set of positive integers. We say that a positive integer $n$ is [i]clean[/i] if it has a unique representation as a sum of an odd number of distinct elements from $S$. Prove that there exist infinitely many positive integers that are not clean.

2019 Serbia Team Selection Test, P3

It is given $n$ a natural number and a circle with circumference $n$. On the circle, in clockwise direction, numbers $0,1,2,\dots n-1$ are written, in this order and in the same distance to each other. Every number is colored red or blue, and there exists a non-zero number of numbers of each color. It is known that there exists a set $S\subsetneq \{0,1,2,\dots n-1\}, |S|\geq 2$, for wich it holds: if $(x,y), x<y$ is a circle sector whose endpoints are of distinct colors, whose distance $y-x$ is in $S$, then $y$ is in $S$. Prove that there is a divisor $d$ of $n$ different from $1$ and $n$ for wich holds: if $(x,y),x<y$ are different points of distinct colors, such that their distance is divisible by $d$, then both $x,y$ are divisible by $d$.

2003 Bulgaria National Olympiad, 1

Let $x_1, x_2 \ldots , x_5$ be real numbers. Find the least positive integer $n$ with the following property: if some $n$ distinct sums of the form $x_p+x_q+x_r$ (with $1\le p<q<r\le 5$) are equal to $0$, then $x_1=x_2=\cdots=x_5=0$.

1998 Yugoslav Team Selection Test, Problem 1

From a deck of playing cards, four [i]threes[/i], four [i]fours[/i] and four [i]fives[/i] are selected and put down on a table with the main side up. Players $A$ and $B$ alternately take the cards one by one and put them on the pile. Player $A$ begins. A player after whose move the sum of values of the cards on the pile is (a) greater than 34; (b) greater than 37; loses the game. Which player has a winning strategy?

1997 Taiwan National Olympiad, 9

For $n\geq k\geq 3$, let $X=\{1,2,...,n\}$ and let $F_{k}$ a the family of $k$-element subsets of $X$, any two of which have at most $k-2$ elements in common. Show that there exists a subset $M_{k}$ of $X$ with at least $[\log_{2}{n}]+1$ elements containing no subset in $F_{k}$.

2013 China Team Selection Test, 3

There are$n$ balls numbered $1,2,\cdots,n$, respectively. They are painted with $4$ colours, red, yellow, blue, and green, according to the following rules: First, randomly line them on a circle. Then let any three clockwise consecutive balls numbered $i, j, k$, in order. 1) If $i>j>k$, then the ball $j$ is painted in red; 2) If $i<j<k$, then the ball $j$ is painted in yellow; 3) If $i<j, k<j$, then the ball $j$ is painted in blue; 4) If $i>j, k>j$, then the ball $j$ is painted in green. And now each permutation of the balls determine a painting method. We call two painting methods distinct, if there exists a ball, which is painted with two different colours in that two methods. Find out the number of all distinct painting methods.

2017 Turkey Team Selection Test, 9

Let $S$ be a set of finite number of points in the plane any 3 of which are not linear and any 4 of which are not concyclic. A coloring of all the points in $S$ to red and white is called [i]discrete coloring[/i] if there exists a circle which encloses all red points and excludes all white points. Determine the number of [i]discrete colorings[/i] for each set $S$.

1999 China Team Selection Test, 3

For every permutation $ \tau$ of $ 1, 2, \ldots, 10$, $ \tau \equal{} (x_1, x_2, \ldots, x_{10})$, define $ S(\tau) \equal{} \sum_{k \equal{} 1}^{10} |2x_k \minus{} 3x_{k \minus{} 1}|$. Let $ x_{11} \equal{} x_1$. Find [b]I.[/b] The maximum and minimum values of $ S(\tau)$. [b]II.[/b] The number of $ \tau$ which lets $ S(\tau)$ attain its maximum. [b]III.[/b] The number of $ \tau$ which lets $ S(\tau)$ attain its minimum.

2023 Switzerland Team Selection Test, 9

Let $G$ be a graph whose vertices are the integers. Assume that any two integers are connected by a finite path in $G$. For two integers $x$ and $y$, we denote by $d(x, y)$ the length of the shortest path from $x$ to $y$, where the length of a path is the number of edges in it. Assume that $d(x, y) \mid x-y$ for all integers $x, y$ and define $S(G)=\{d(x, y) | x, y \in \mathbb{Z}\}$. Find all possible sets $S(G)$.

1976 IMO Longlists, 48

The polynomial $1976(x+x^2+ \cdots +x^n)$ is decomposed into a sum of polynomials of the form $a_1x + a_2x^2 + \cdots + a_nx^n$, where $a_1, a_2, \ldots , a_n$ are distinct positive integers not greater than $n$. Find all values of $n$ for which such a decomposition is possible.