This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2014 Puerto Rico Team Selection Test, 7

Consider $N$ points in the plane such that the area of a triangle formed by any three of the points does not exceed $1$. Prove that there is a triangle of area not more than $4$ that contains all $N$ points.

2002 Tournament Of Towns, 7

[list] [*] A power grid with the shape of a $3\times 3$ lattice with $16$ nodes (vertices of the lattice) joined by wires (along the sides of squares. It may have happened that some of the wires have burned out. In one test technician can choose any two nodes and check if electrical current circulates between them (i.e there is a chain of intact wires joining the chosen nodes) . Technicial knows that current will circulate from any node to another node. What is the least number of tests required to demonstrate this? [*] Previous problem for the grid of $7\times 7$ lattice.[/list]

2017 Harvard-MIT Mathematics Tournament, 7

[b]O[/b]n a blackboard a stranger writes the values of $s_7(n)^2$ for $n=0,1,...,7^{20}-1$, where $s_7(n)$ denotes the sum of digits of $n$ in base $7$. Compute the average value of all the numbers on the board.

2008 Abels Math Contest (Norwegian MO) Final, 2b

A and B play a game on a square board consisting of $n \times n$ white tiles, where $n \ge 2$. A moves first, and the players alternate taking turns. A move consists of picking a square consisting of $2\times 2$ or $3\times 3$ white tiles and colouring all these tiles black. The first player who cannot find any such squares has lost. Show that A can always win the game if A plays the game right.

2025 Israel TST, P1

Let \( f(N) \) denote the maximum number of \( T \)-tetrominoes that can be placed on an \( N \times N \) board such that each \( T \)-tetromino covers at least one cell that is not covered by any other \( T \)-tetromino. Find the smallest real number \( c \) such that \[ f(N) \leq cN^2 \] for all positive integers \( N \).

2020 May Olympiad, 1

Sofia places the dice on a table as shown in the figure, matching faces that have the same number on each die. She circles the table without touching the dice. What is the sum of the numbers of all the faces that she cannot see? $Note$. In all given the numbers on the opposite faces add up to 7.

2019 BMT Spring, Tie 5

Ankit, Box, and Clark are taking the tiebreakers for the geometry round, consisting of three problems. Problem $k$ takes each $k$ minutes to solve. If for any given problem there is a $\frac13$ chance for each contestant to solve that problem first, what is the probability that Ankit solves a problem first?

2016 Federal Competition For Advanced Students, P2, 5

Consider a board consisting of $n\times n$ unit squares where $n \ge 2$. Two cells are called neighbors if they share a horizontal or vertical border. In the beginning, all cells together contain $k$ tokens. Each cell may contain one or several tokens or none. In each turn, choose one of the cells that contains at least one token for each of its neighbors and move one of those to each of its neighbors. The game ends if no such cell exists. (a) Find the minimal $k$ such that the game does not end for any starting configuration and choice of cells during the game. (b) Find the maximal $k$ such that the game ends for any starting configuration and choice of cells during the game. Proposed by Theresia Eisenkölbl

2023 Baltic Way, 7

A robot moves in the plane in a straight line, but every one meter it turns $90^{\circ}$ to the right or to the left. At some point it reaches its starting point without having visited any other point more than once, and stops immediately. What are the possible path lengths of the robot?

Russian TST 2016, P1

Several people came to the congress, each of whom has a certain number of tattoos on both hands. There are $n{}$ types of tattoos, and each of the $n{}$ types is found on the hands of at least $k{}$ people. For which pairs $(n, k)$ is it always possible for each participant to raise one of their hands so that all $n{}$ types of tattoos are present on the raised hands?

2020 Switzerland - Final Round, 6

Let $n \ge 2$ be an integer. Consider the following game: Initially, $k$ stones are distributed among the $n^2$ squares of an $n\times n$ chessboard. A move consists of choosing a square containing at least as many stones as the number of its adjacent squares (two squares are adjacent if they share a common edge) and moving one stone from this square to each of its adjacent squares. Determine all positive integers $k$ such that: (a) There is an initial configuration with $k$ stones such that no move is possible. (b) There is an initial configuration with $k$ stones such that an infinite sequence of moves is possible.

2014 HMNT, 7

Sammy has a wooden board, shaped as a rectangle with length $2^{2014}$ and height $3^{2014}$. The board is divided into a grid of unit squares. A termite starts at either the left or bottom edge of the rectangle, and walks along the gridlines by moving either to the right or upwards, until it reaches an edge opposite the one from which the termite started. Depicted below are two possible paths of the termite. [img]https://cdn.artofproblemsolving.com/attachments/3/0/39f3b2aa9c61ff24ffc22b968790f4c61da6f9.png[/img] The termite’s path dissects the board into two parts. Sammy is surprised to find that he can still arrange the pieces to form a new rectangle not congruent to the original rectangle. This rectangle has perimeter $P$. How many possible values of $P$ are there?

1954 Moscow Mathematical Olympiad, 278

A $17 \times 17$ square is cut out of a sheet of graph paper. Each cell of this square has one of thenumbers from $1$ to $70$. Prove that there are $4$ distinct squares whose centers $A, B, C, D$ are the vertices of a parallelogramsuch that $AB // CD$, moreover, the sum of the numbers in the squares with centers $A$ and $C$ is equal to that in the squares with centers $B$ and $D$.

2014 Turkey Team Selection Test, 3

At the bottom-left corner of a $2014\times 2014$ chessboard, there are some green worms and at the top-left corner of the same chessboard, there are some brown worms. Green worms can move only to right and up, and brown worms can move only to right and down. After a while, the worms make some moves and all of the unit squares of the chessboard become occupied at least once throughout this process. Find the minimum total number of the worms.

2017 Iran MO (2nd Round), 3

Let $n$ be a natural number divisible by $3$. We have a $n \times n$ table and each square is colored either black or white. Suppose that for all $m \times m$ sub-tables from the table ($m > 1$), the number of black squares is not more than white squares. Find the maximum number of black squares.

2023 Junior Balkan Team Selection Tests - Moldova, 7

Every point on a circle is coloured in blue or yellow such there is at least a point of each color. Prove that for every colouring of the circle there is always an isosceles triangle inscribed inside the circle 1) with all vertexes of the same colour. 2) with vertexes of both colours. For every colouring of the circle is there an equilateral triangle inscribed inside the circle 3) with all vertexes of the same colour? 4) with vertexes of both colours?

1994 Tournament Of Towns, (400) 2

$60$ children participate in a summer camp. Among any $10$ of the children there are three or more who live in the same block. Prove that there must be $15$ or more children from the same block. (Folklore)

2023 OMpD, 3

Let $m$ and $n$ be positive integers integers such that $2m + 1 < n$, and let $S$ be the set of the $2^n$ subsets of $\{1,2,\ldots,n\}$. Prove that we can place the elements of $S$ on a circle, so that for any two adjacent elements $A$ and $B$, the set $A \Delta B$ has exactly $2m + 1$ elements. [b]Note[/b]: $A \Delta B = (A \cup B) - (A \cap B)$ is the set of elements that are exclusively in $A$ or exclusively in $B$.

2017 Vietnam Team Selection Test, 3

For each integer $n>0$, a permutation $a_1,a_2,\dots ,a_{2n}$ of $1,2,\dots 2n$ is called [i]beautiful[/i] if for every $1\leq i<j \leq 2n$, $a_i+a_{n+i}=2n+1$ and $a_i-a_{i+1}\not \equiv a_j-a_{j+1}$ (mod $2n+1$) (suppose that $a_{2n+1}=a_1$). a. For $n=6$, point out a [i]beautiful [/i] permutation. b. Prove that there exists a [i]beautiful[/i] permutation for every $n$.

2008 Portugal MO, 1

What is the maximum number of triangles with vertices on the points of the fork/graph which is possible to construct?

2014 German National Olympiad, 2

For a positive integer $n$, let $y_n$ be the number of $n$-digit positive integers containing only the digits $2,3,5, 7$ and which do not have a $5$ directly to the right of a $2.$ If $r\geq 1$ and $m\geq 2$ are integers, prove that $y_{m-1}$ divides $y_{rm-1}.$

2023 Nordic, P1

Alice and Bianca have one hundred marbles. At the start of the game they split these hundred marbles into two piles. Thereafter, a move consists of choosing a pile, then choosing a positive integer not larger than half of the number of marbles in that pile, and finally removing that number of marbles from the chosen pile. The first player unable to remove any marbles loses. Alice makes the first move of the game. Determine all initial pile sizes for which Bianca has a winning strategy.

2014 China Team Selection Test, 6

Let $n\ge 2$ be a positive integer. Fill up a $n\times n$ table with the numbers $1,2,...,n^2$ exactly once each. Two cells are termed adjacent if they have a common edge. It is known that for any two adjacent cells, the numbers they contain differ by at most $n$. Show that there exist a $2\times 2$ square of adjacent cells such that the diagonally opposite pairs sum to the same number.

2015 China Team Selection Test, 2

Let $X$ be a non-empty and finite set, $A_1,...,A_k$ $k$ subsets of $X$, satisying: (1) $|A_i|\leq 3,i=1,2,...,k$ (2) Any element of $X$ is an element of at least $4$ sets among $A_1,....,A_k$. Show that one can select $[\frac{3k}{7}] $ sets from $A_1,...,A_k$ such that their union is $X$.

2002 Tournament Of Towns, 7

[list] [*] A power grid with the shape of a $3\times 3$ lattice with $16$ nodes (vertices of the lattice) joined by wires (along the sides of squares. It may have happened that some of the wires have burned out. In one test technician can choose any two nodes and check if electrical current circulates between them (i.e there is a chain of intact wires joining the chosen nodes) . Technicial knows that current will circulate from any node to another node. What is the least number of tests required to demonstrate this? [*] Previous problem for the grid of $5\times 5$ lattice.[/list]