This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2024 Ukraine National Mathematical Olympiad, Problem 8

There are $2024$ cities in a country, some pairs of which are connected by bidirectional flights. For any distinct cities $A, B, C, X, Y, Z$, it is possible to fly directly from some of the cities $A, B, C$ to some of the cities $X, Y, Z$. Prove that it is possible to plan a route $T_1\to T_2 \to \ldots \to T_{2022}$ that passes through $2022$ distinct cities. [i]Proposed by Lior Shayn[/i]

1984 IMO Longlists, 24

(a) Decide whether the fields of the $8 \times 8$ chessboard can be numbered by the numbers $1, 2, \dots , 64$ in such a way that the sum of the four numbers in each of its parts of one of the forms [list][img]http://www.artofproblemsolving.com/Forum/download/file.php?id=28446[/img][/list] is divisible by four. (b) Solve the analogous problem for [list][img]http://www.artofproblemsolving.com/Forum/download/file.php?id=28447[/img][/list]

2019 China Second Round Olympiad, 4

Each side of a convex $2019$-gon polygon is dyed with red, yellow and blue, and there are exactly $673$ sides of each kind of color. Prove that there exists at least one way to draw $2016$ diagonals to divide the convex $2019$-gon polygon into $2017$ triangles, such that any two of the $2016$ diagonals don't have intersection inside the $2019$-gon polygon,and for any triangle in all the $2017$ triangles, the colors of the three sides of the triangle are all the same, either totally different.

2015 China Team Selection Test, 1

For a positive integer $n$, and a non empty subset $A$ of $\{1,2,...,2n\}$, call $A$ good if the set $\{u\pm v|u,v\in A\}$ does not contain the set $\{1,2,...,n\}$. Find the smallest real number $c$, such that for any positive integer $n$, and any good subset $A$ of $\{1,2,...,2n\}$, $|A|\leq cn$.

2019 ABMC, Accuracy

[b]p1.[/b] Compute $45\times 45 - 6$. [b]p2.[/b] Consecutive integers have nice properties. For example, $3$, $4$, $5$ are three consecutive integers, and $8$, $9$, $10$ are three consecutive integers also. If the sum of three consecutive integers is $24$, what is the smallest of the three numbers? [b]p3.[/b] How many positive integers less than $25$ are either multiples of $2$ or multiples of $3$? [b]p4.[/b] Charlotte has $5$ positive integers. Charlotte tells you that the mean, median, and unique mode of his five numbers are all equal to $10$. What is the largest possible value of the one of Charlotte's numbers? [b]p5.[/b] Mr. Meeseeks starts with a single coin. Every day, Mr. Meeseeks goes to a magical coin converter where he can either exchange $1$ coin for $5$ coins or exchange $5$ coins for $3$ coins. What is the least number of days Mr. Meeseeks needs to end with $15$ coins? [b]p6.[/b] Twelve years ago, Violet's age was twice her sister Holo's age. In $7$ years, Holo's age will be $13$ more than a third of Violet's age. $3$ years ago, Violet and Holo's cousin Rindo's age was the sum of their ages. How old is Rindo? [b]p7.[/b] In a $2 \times 3$ rectangle composed of $6$ unit squares, let $S$ be the set of all points $P$ in the rectangle such that a unit circle centered at $P$ covers some point in exactly $3$ of the unit squares. Find the area of the region $S$. For example, the diagram below shows a valid unit circle in a $2 \times 3$ rectangle. [img]https://cdn.artofproblemsolving.com/attachments/d/9/b6e00306886249898c2bdb13f5206ced37d345.png[/img] [b]p8.[/b] What are the last four digits of $2^{1000}$? [b]p9.[/b] There is a point $X$ in the center of a $2 \times 2 \times 2$ box. Find the volume of the region of points that are closer to $X$ than to any of the vertices of the box. [b]p10.[/b] Evaluate $\sqrt{37 \cdot 41 \cdot 113 \cdot 290 - 4319^2}$ [b]p11.[/b] (Estimation) A number is abundant if the sum of all its divisors is greater than twice the number. One such number is $12$, because $1+2+3+4+6+12 = 28 > 24$: How many abundant positive integers less than $20190$ are there? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2008 Thailand Mathematical Olympiad, 10

On the sides of triangle $\vartriangle ABC$, $17$ points are added, so that there are $20$ points in total (including the vertices of $\vartriangle ABC$.) What is the maximum possible number of (nondegenerate) triangles that can be formed by these points.

2018 Miklós Schweitzer, 4

Let $P$ be a finite set of points in the plane. Assume that the distance between any two points is an integer. Prove that $P$ can be colored by three colors such that the distance between any two points of the same color is an even number.

2004 Hong kong National Olympiad, 4

Let $S=\{1,2,...,100\}$ . Find number of functions $f: S\to S$ satisfying the following conditions a)$f(1)=1$ b)$f$ is bijective c)$f(n)=f(g(n))f(h(n))\forall n\in S$, where $g(n),h(n)$ are positive integer numbers such that $g(n)\leq h(n),n=g(n)h(n)$ that minimize $h(n)-g(n)$.

2021 Nigerian Senior MO Round 2, 3

On a certain board, fractions are always written in their lowest form. Pionaj starts with 2 random positive fractions. After every minute,he replaces one of the previous 2 fractions (at random) with a new fraction that is equal to the sum of their numerators divided by the sum of their denominators. Given that he continues this indefinitely, show that eventually all the resulting fractions would be in their lowest forms even before writing them on the board(recall that he has to reduce each fration to their lowest form beore writing it on the board for the next operation). (for example starting with $\frac{15}{7}$ and $\frac{10}{3}$ he may replace it with $\frac{5}{2}$

2021 Malaysia IMONST 1, Juniors

IMONST = [b]I[/b]nternational [b]M[/b]athematical [b]O[/b]lympiad [b]N[/b]ational [b]S[/b]election [b]T[/b]est Malaysia 2021 Round 1 Juniors Time: 2.5 hours [hide=Rules] $\bullet$ For each problem you have to submit the answer only. The answer to each problem is a non-negative integer. $\bullet$ No mark is deducted for a wrong answer. $\bullet$ The maximum number of points is (1 + 2 + 3 + 4) x 5 = 50 points.[/hide] [b]Part A[/b] (1 point each) p1. Adam draws $7$ circles on a paper, with radii $ 1$ cm, $2$ cm, $3$ cm, $4$ cm, $5$ cm, $6$ cm, and $7$ cm. The circles do not intersect each other. He colors some circles completely red, and the rest of the circles completely blue. What is the minimum possible difference (in cm$^2$) between the total area of the red circles and the total area of the blue circles? p2. The number $2021$ has a special property that the sum of any two neighboring digits in the number is a prime number ($2 + 0 = 2$, $0 + 2 = 2$, and $2 + 1 = 3$ are all prime numbers). Among numbers from $2021$ to $2041$, how many of them have this property? p3. Clarissa opens a pet shop that sells three types of pets: goldshes, hamsters, and parrots. The pets inside the shop together have a total of $14$ wings, $24$ heads, and $62$ legs. How many goldshes are there inside Clarissa's shop? p4. A positive integer $n$ is called special if $n$ is divisible by $4$, $n+1$ is divisible by $5$, and $n + 2$ is divisible by $6$. How many special integers smaller than $1000$ are there? p5. Suppose that this decade begins on $ 1$ January $2020$ (which is a Wednesday) and the next decade begins on $ 1$ January $2030$. How many Wednesdays are there in this decade? [b]Part B[/b] (2 points each) p6. Given an isosceles triangle $ABC$ with $AB = AC$. Let D be a point on $AB$ such that $CD$ is the bisector of $\angle ACB$. If $CB = CD$, what is $\angle ADC$, in degrees? p7. Determine the number of isosceles triangles with the following properties: all the sides have integer lengths (in cm), and the longest side has length $21$ cm. p8. Haz marks $k$ points on the circumference of a circle. He connects every point to every other point with straight lines. If there are $210$ lines formed, what is $k$? p9. What is the smallest positive multiple of $24$ that can be written using digits $4$ and $5$ only? p10. In a mathematical competition, there are $2021$ participants. Gold, silver, and bronze medals are awarded to the winners as follows: (i) the number of silver medals is at least twice the number of gold medals, (ii) the number of bronze medals is at least twice the number of silver medals, (iii) the number of all medals is not more than $40\%$ of the number of participants. The competition director wants to maximize the number of gold medals to be awarded based on the given conditions. In this case, what is the maximum number of bronze medals that can be awarded? [b]Part C[/b] (3 points each) p11. Dinesh has several squares and regular pentagons, all with side length $ 1$. He wants to arrange the shapes alternately to form a closed loop (see diagram). How many pentagons would Dinesh need to do so? [img]https://cdn.artofproblemsolving.com/attachments/8/9/6345d7150298fe26cfcfba554656804ed25a6d.jpg [/img] p12. If $x +\frac{1}{x} = 5$, what is the value of $x^3 +\frac{1}{x^3} $ ? p13. There are $10$ girls in a class, all with different heights. They want to form a queue so that no girl stands directly between two girls shorter than her. How many ways are there to form the queue? p14. The two diagonals of a rhombus have lengths with ratio $3 : 4$ and sum $56$. What is the perimeter of the rhombus? p15. How many integers $n$ (with $1 \le n \le 2021$) have the property that $8n + 1$ is a perfect square? [b]Part D[/b] (4 points each) p16. Given a segment of a circle, consisting of a straight edge and an arc. The length of the straight edge is $24$. The length between the midpoint of the straight edge and the midpoint of the arc is $6$. Find the radius of the circle. p17. Sofia has forgotten the passcode of her phone. She only remembers that it has four digits and that the product of its digits is $18$. How many passcodes satisfy these conditions? p18. A tree grows in the following manner. On the first day, one branch grows out of the ground. On the second day, a leaf grows on the branch and the branch tip splits up into two new branches. On each subsequent day, a new leaf grows on every existing branch, and each branch tip splits up into two new branches. How many leaves does the tree have at the end of the tenth day? p19. Find the sum of (decimal) digits of the number $(10^{2021} + 2021)^2$? p20. Determine the number of integer solutions $(x, y, z)$, with $0 \le x, y, z \le 100$, for the equation$$(x - y)^2 + (y + z)^2 = (x + y)^2 + (y - z)^2.$$

1989 Tournament Of Towns, (242) 6

A rectangular array has $m$ rows and $n$ columns, where $m < n$. Some cells of the array contain stars, in such a way that there is at least one star in each column. Prove that there is at least one such star such that the row containing it has more stars than the column containing it. (A. Razborov, Moscow)

2023 Chile Classification NMO Juniors, 1

There are 10 numbers on a board. The product of any four of them is divisible by 30. Prove that at least one of the numbers on the board is divisible by 30.

2018 Hanoi Open Mathematics Competitions, 10

[THE PROBLEM OF PAINTING THE THÁP RÙA (THE CENTRAL TOWER) MODEL] The following picture illustrates the model of the Tháp Rùa (the Central Tower) in Hanoi, which consists of $3$ levels. For the first and second levels, each has $10$ doorways among which $3$ doorways are located at the front, $3$ at the back, $2$ on the right side and $2$ on the left side. The top level of the tower model has no doorways. The front of the tower model is signified by a disk symbol on the top level. We paint the tower model with three colors: Blue, Yellow and Brown by fulfilling the following requirements: 1. The top level is painted with only one color. 2. In the second level, the $3$ doorways at the front are painted with the same color which is different from the one used for the center doorway at the back. Besides, any two adjacent doorways, including the pairs at the same corners, are painted with different colors. 3. For the first level, we apply the same rules as for the second level. [img]https://cdn.artofproblemsolving.com/attachments/2/3/18ee062b79693c4ccc26bf922a7f54e9f352ee.png[/img] (a) In how many ways the first level can be painted? (b) In how many ways the whole tower model can be painted?

2007 BAMO, 1

A $15$-inch-long stick has four marks on it, dividing it into five segments of length $1,2,3, 4$, and $5$ inches (although not neccessarily in that order) to make a “ruler.” Here is an example. [img]https://cdn.artofproblemsolving.com/attachments/0/e/065d42b36083453f3586970125bedbc804b8a1.png[/img] Using this ruler, you could measure $8$ inches (between the marks $B$ and $D$) and $11$ inches (between the end of the ruler at $A$ and the mark at $E$), but there’s no way you could measure $12$ inches. Prove that it is impossible to place the four marks on the stick such that the five segments have length $1,2,3, 4$, and $5$ inches, and such that every integer distance from $1$ inch through $15$ inches could be measured.

2022 AMC 8 -, 14

In how many ways can the letters in BEEKEEPER be rearranged so that two or more Es do not appear together? $\textbf{(A)} ~1\qquad\textbf{(B)} ~4\qquad\textbf{(C)} ~12\qquad\textbf{(D)} ~24\qquad\textbf{(E)} ~120\qquad$

2018 South East Mathematical Olympiad, 7

There are $24$ participants attended a meeting. Each two of them shook hands once or not. A total of $216$ handshakes occured in the meeting. For any two participants who have shaken hands, at most $10$ among the rest $22$ participants have shaken hands with exactly one of these two persons. Define a [i]friend circle[/i] to be a group of $3$ participants in which each person has shaken hands with the other two. Find the minimum possible value of friend circles.

1993 All-Russian Olympiad, 2

The integers from $1$ to $1993$ are written in a line in some order. The following operation is performed with this line: if the first number is $k$ then the first $k$ numbers are rewritten in reverse order. Prove that after some finite number of these operations, the first number in the line of numbers will be $1$.

2007 Romania National Olympiad, 4

Given a set $A$ and a function $f: A\rightarrow A$, denote by $f_{1}(A)=f(A)$, $f_{2}(A)=f(f_{1}(A))$, $f_{3}(A)=f(f_{2}(A))$, and so on, ($f_{n}(A)=f(f_{n-1}(A))$, where the notation $f(B)$ means the set $\{ f(x) \ : \ x\in B\}$ of images of points from $B$). Denote also by $f_{\infty}(A)=f_{1}(A)\cap f_{2}(A)\cap \ldots = \bigcap_{n\geq 1}f_{n}(A)$. a) Show that if $A$ is finite, then $f(f_{\infty}(A))=f_{\infty}(A)$. b) Determine if the above is true for $A=\mathbb{N}\times \mathbb{N}$ and the function \[f\big((m,n)\big)=\begin{cases}(m+1,n) & \mbox{if }n\geq m\geq 1 \\ (0,0) & \mbox{if }m>n \\ (0,n+1) & \mbox{if }n=0. \end{cases}\]

2008 Junior Balkan Team Selection Tests - Moldova, 12

Natural nonzero numder, which consists of $ m$ digits, is called hiperprime, if its any segment, which consists $ 1,2,...,m$ digits is prime (for example $ 53$ is hiperprime, because numbers $ 53,3,5$ are prime). Find all hiperprime numbers.

2014 BMT Spring, 4

Alice, Bob, Cindy, David, and Emily sit in a circle. Alice refuses to sit to the right of Bob, and Emily sits next to Cindy. If David sits next to two girls, determine who could sit immediately to the right of Alice.

2016 Middle European Mathematical Olympiad, 2

There are $n \ge 3$ positive integers written on a board. A [i]move[/i] consists of choosing three numbers $a, b, c$ written from the board such that there exists a non-degenerate non-equilateral triangle with sides $a, b, c$ and replacing those numbers with $a + b - c, b + c - a$ and $c + a - b$. Prove that a sequence of moves cannot be infinite.

2014 India Regional Mathematical Olympiad, 4

Is it possible to write the numbers $17$,$18$,$19$,...$32$ in a $4*4$ grid of unit squares with one number in each square such that if the grid is divided into four $2*2$ subgrids of unit squares ,then the product of numbers in each of the subgrids divisible by $16$?

1977 All Soviet Union Mathematical Olympiad, 248

Given natural numbers $x_1,x_2,...,x_n,y_1,y_2,...,y_m$. The following condition is valid: $$(x_1+x_2+...+x_n)=(y_1+y_2+...+y_m)<mn \,\,\,\, (*)$$ Prove that it is possible to delete some terms from (*) (not all and at least one) and to obtain another valid condition.

2019 239 Open Mathematical Olympiad, 1

On the island of knights and liars, a tennis tournament was held, in which $100$ people participated in. Each two of them played exactly $1$ time with the other one. After the tournament, each of the participants declared: “I have beaten as many knights as liars,” while all the knights told the truth, and all the liars lied. What is the largest number of knights that could participate in the tournament?

2017 All-Russian Olympiad, 4

Magicman and his helper want to do some magic trick. They have special card desk. Back of all cards is common color and face is one of $2017$ colors. Magic trick: magicman go away from scene. Then viewers should put on the table $n>1$ cards in the row face up. Helper looks at these cards, then he turn all cards face down, except one, without changing order in row. Then magicman returns on the scene, looks at cards, then show on the one card, that lays face down and names it face color. What is minimal $n$ such that magicman and his helper can has strategy to make magic trick successfully?