This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2012 EGMO, 2

Let $n$ be a positive integer. Find the greatest possible integer $m$, in terms of $n$, with the following property: a table with $m$ rows and $n$ columns can be filled with real numbers in such a manner that for any two different rows $\left[ {{a_1},{a_2},\ldots,{a_n}}\right]$ and $\left[ {{b_1},{b_2},\ldots,{b_n}} \right]$ the following holds: \[\max\left( {\left| {{a_1} - {b_1}} \right|,\left| {{a_2} - {b_2}} \right|,...,\left| {{a_n} - {b_n}} \right|} \right) = 1\] [i]Poland (Tomasz Kobos)[/i]

2022 Iran Team Selection Test, 9

consider $n\geq 6$ points $x_1,x_2,\dots,x_n$ on the plane such that no three of them are colinear. We call graph with vertices $x_1,x_2,\dots,x_n$ a "road network" if it is connected, each edge is a line segment, and no two edges intersect each other at points other than the vertices. Prove that there are three road networks $G_1,G_2,G_3$ such that $G_i$ and $G_j$ don't have a common edge for $1\leq i,j\leq 3$. Proposed by Morteza Saghafian

2022 Kyiv City MO Round 1, Problem 3

You are given $n$ not necessarily distinct real numbers $a_1, a_2, \ldots, a_n$. Let's consider all $2^n-1$ ways to select some nonempty subset of these numbers, and for each such subset calculate the sum of the selected numbers. What largest possible number of them could have been equal to $1$? For example, if $a = [-1, 2, 2]$, then we got $3$ once, $4$ once, $2$ twice, $-1$ once, $1$ twice, so the total number of ones here is $2$. [i](Proposed by Anton Trygub)[/i]

2023 Saint Petersburg Mathematical Olympiad, 4

What is the minimal number of operations needed to repaint a entirely white grid $100 \times 100$ to be entirely black, if on one move we can choose $99$ cells from any row or column and change their color?

1969 Bulgaria National Olympiad, Problem 3

Some of the points in the plane are white and some are blue (every point of the plane is either white or blue). Prove that for every positive number $r$: (a) there are at least two points with different color such that the distance between them is equal to $r$; (b) there are at least two points with the same color and the distance between them is equal to $r$; (c) will the statements above be true if the plane is replaced with the real line?

2002 Irish Math Olympiad, 1

A $ 3 \times n$ grid is filled as follows. The first row consists of the numbers from $ 1$ to $ n$ arranged in ascending order. The second row is a cyclic shift of the top row: $ i,i\plus{}1,...,n,1,2,...,i\minus{}1$ for some $ i$. The third row has the numbers $ 1$ to $ n$ in some order so that in each of the $ n$ columns, the sum of the three numbers is the same. For which values of $ n$ is it possible to fill the grid in this way? For all such $ n$, determine the number of different ways of filling the grid.

2023 CMIMC Combo/CS, 5

A BWM tree is defined recursively: [list] [*] An empty tree is a BWM tree of height 0 and size 0. [*] A nonempty BWM tree consists of a root node and three subtrees, each of which is itself a (possibly empty) BWM tree. The height of the tallest of the subtrees must be at most 2 more than the height of the shortest. [*] The height of a nonempty BWM tree is one more than the height of its tallest subtree, and the size of a nonempty BWM tree is one more than the sum of the sizes of the subtrees. [/list] What is the minimum size of a height-10 BWM tree? [i]Proposed by Jacob Weiner[/i]

2015 Dutch IMO TST, 4

Each of the numbers $1$ up to and including $2014$ has to be coloured; half of them have to be coloured red the other half blue. Then you consider the number $k$ of positive integers that are expressible as the sum of a red and a blue number. Determine the maximum value of $k$ that can be obtained.

2019 ELMO Shortlist, C3

In the game of [i]Ring Mafia[/i], there are $2019$ counters arranged in a circle. $673$ of these counters are mafia, and the remaining $1346$ counters are town. Two players, Tony and Madeline, take turns with Tony going first. Tony does not know which counters are mafia but Madeline does. On Tony’s turn, he selects any subset of the counters (possibly the empty set) and removes all counters in that set. On Madeline’s turn, she selects a town counter which is adjacent to a mafia counter and removes it. Whenever counters are removed, the remaining counters are brought closer together without changing their order so that they still form a circle. The game ends when either all mafia counters have been removed, or all town counters have been removed. Is there a strategy for Tony that guarantees, no matter where the mafia counters are placed and what Madeline does, that at least one town counter remains at the end of the game? [i]Proposed by Andrew Gu[/i]

1986 IMO Shortlist, 13

A particle moves from $(0, 0)$ to $(n, n)$ directed by a fair coin. For each head it moves one step east and for each tail it moves one step north. At $(n, y), y < n$, it stays there if a head comes up and at $(x, n), x < n$, it stays there if a tail comes up. Let$ k$ be a fixed positive integer. Find the probability that the particle needs exactly $2n+k$ tosses to reach $(n, n).$

LMT Team Rounds 2010-20, 2019 Fall

[b]p1.[/b] What is the smallest possible value for the product of two real numbers that differ by ten? [b]p2.[/b] Determine the number of positive integers $n$ with $1 \le n \le 400$ that satisfy the following: $\bullet$ $n$ is a square number. $\bullet$ $n$ is one more than a multiple of $5$. $\bullet$ $n$ is even. [b]p3.[/b] How many positive integers less than $2019$ are either a perfect cube or a perfect square but not both? [b]p4.[/b] Felicia draws the heart-shaped figure $GOAT$ that is made of two semicircles of equal area and an equilateral triangle, as shown below. If $GO = 2$, what is the area of the figure? [img]https://cdn.artofproblemsolving.com/attachments/3/c/388daa657351100f408ab3f1185f9ab32fcca5.png[/img] [b]p5.[/b] For distinct digits $A, B$, and $ C$: $$\begin{tabular}{cccc} & A & A \\ & B & B \\ + & C & C \\ \hline A & B & C \\ \end{tabular}$$ Compute $A \cdot B \cdot C$. [b]p6 [/b] What is the difference between the largest and smallest value for $lcm(a,b,c)$, where $a,b$, and $c$ are distinct positive integers between $1$ and $10$, inclusive? [b]p7.[/b] Let $A$ and $B$ be points on the circumference of a circle with center $O$ such that $\angle AOB = 100^o$. If $X$ is the midpoint of minor arc $AB$ and $Y$ is on the circumference of the circle such that $XY\perp AO$, find the measure of $\angle OBY$ . [b]p8. [/b]When Ben works at twice his normal rate and Sammy works at his normal rate, they can finish a project together in $6$ hours. When Ben works at his normal rate and Sammy works as three times his normal rate, they can finish the same project together in $4$ hours. How many hours does it take Ben and Sammy to finish that project if they each work together at their normal rates? [b][b]p9.[/b][/b] How many positive integer divisors $n$ of $20000$ are there such that when $20000$ is divided by $n$, the quotient is divisible by a square number greater than $ 1$? [b]p10.[/b] What’s the maximum number of Friday the $13$th’s that can occur in a year? [b]p11.[/b] Let circle $\omega$ pass through points $B$ and $C$ of triangle $ABC$. Suppose $\omega$ intersects segment $AB$ at a point $D \ne B$ and intersects segment $AC$ at a point $E \ne C$. If $AD = DC = 12$, $DB = 3$, and $EC = 8$, determine the length of $EB$. [b]p12.[/b] Let $a,b$ be integers that satisfy the equation $2a^2 - b^2 + ab = 18$. Find the ordered pair $(a,b)$. [b]p13.[/b] Let $a,b,c$ be nonzero complex numbers such that $a -\frac{1}{b}= 8, b -\frac{1}{c}= 10, c -\frac{1}{a}= 12.$ Find $abc -\frac{1}{abc}$ . [b]p14.[/b] Let $\vartriangle ABC$ be an equilateral triangle of side length $1$. Let $\omega_0$ be the incircle of $\vartriangle ABC$, and for $n > 0$, define the infinite progression of circles $\omega_n$ as follows: $\bullet$ $\omega_n$ is tangent to $AB$ and $AC$ and externally tangent to $\omega_{n-1}$. $\bullet$ The area of $\omega_n$ is strictly less than the area of $\omega_{n-1}$. Determine the total area enclosed by all $\omega_i$ for $i \ge 0$. [b]p15.[/b] Determine the remainder when $13^{2020} +11^{2020}$ is divided by $144$. [b]p16.[/b] Let $x$ be a solution to $x +\frac{1}{x}= 1$. Compute $x^{2019} +\frac{1}{x^{2019}}$ . [b]p17. [/b]The positive integers are colored black and white such that if $n$ is one color, then $2n$ is the other color. If all of the odd numbers are colored black, then how many numbers between $100$ and $200$ inclusive are colored white? [b]p18.[/b] What is the expected number of rolls it will take to get all six values of a six-sided die face-up at least once? [b]p19.[/b] Let $\vartriangle ABC$ have side lengths $AB = 19$, $BC = 2019$, and $AC = 2020$. Let $D,E$ be the feet of the angle bisectors drawn from $A$ and $B$, and let $X,Y$ to be the feet of the altitudes from $C$ to $AD$ and $C$ to $BE$, respectively. Determine the length of $XY$ . [b]p20.[/b] Suppose I have $5$ unit cubes of cheese that I want to divide evenly amongst $3$ hungry mice. I can cut the cheese into smaller blocks, but cannot combine blocks into a bigger block. Over all possible choices of cuts in the cheese, what’s the largest possible volume of the smallest block of cheese? PS. You had better use hide for answers.

2001 Paraguay Mathematical Olympiad, 1

In a warehouse there are many empty cans of $4$ colors: red, green, Blue and yellow. Some boys play to build towers in which no two cans of the same color, with a can in each floor and at any height. How many different towers can be built?

2006 Kurschak Competition, 2

Let $a,t,n$ be positive integers such that $a\le n$. Consider the subsets of $\{1,2,\dots,n\}$ whose any two elements differ by at least $t$. Prove that the number of such subsets not containing $a$ is at most $t^2$ times the number of those that do contain $a$.

2013 Canadian Mathematical Olympiad Qualification Repechage, 4

Four boys and four girls each bring one gift to a Christmas gift exchange. On a sheet of paper, each boy randomly writes down the name of one girl, and each girl randomly writes down the name of one boy. At the same time, each person passes their gift to the person whose name is written on their sheet. Determine the probability that [i]both[/i] of these events occur: [list] [*] (i) Each person receives exactly one gift; [*] (ii) No two people exchanged presents with each other (i.e., if $A$ gave his gift to $B$, then $B$ did not give her gift to $A$).[/list]

2022 Israel National Olympiad, P1

In a room are several people, some of which always lie and all others always tell the truth. Their ages are pairwise distinct. Each person says one of the following phrases: "In this room, there is an equal number of truth-sayers older than me and of liars younger than me" or "In this room, there is an equal number of truth-sayers younger than me and of liars older than me" What is the maximum possible number of truth-sayers in the room? Find an example in which this maximum is achieved and prove a higher number is impossible.

1992 Tournament Of Towns, (353) 2

For which values of $n$ is it possible to construct an $n$ by $n$ by $n$ cube with $n^3$ unit cubes, each of which is black or white, such that each cube shares a common face with exactly three cubes of the opposite colour? (S Tokarev)

2020 Simon Marais Mathematics Competition, A1

There are $1001$ points in the plane such that no three are collinear. The points are joined by $1001$ line segments such that each point is an endpoint of exactly two of the line segments. Prove that there does not exist a straight line in the plane that intersects each of the $1001$ segments in an interior point. [i]An interior point of a line segment is a point of the line segment that is not one of the two endpoints.[/i]

2021 Bosnia and Herzegovina Team Selection Test, 4

An L-shaped figure composed of $4$ unit squares (such as shown in the picture) we call L-dominoes. [img]https://cdn.artofproblemsolving.com/attachments/b/2/064b7c7de496f981cd937cbb7392efc1066420.png[/img] Determine the maximum number of L-dominoes that can be placed on a board of dimensions $n \times n$, where $n$ is natural number, so that no two dominoes overlap and it is possible get from the upper left to the lower right corner of the board by moving only across those squares that are not covered by dominoes. (By moving, we move from someone of the square on it the neighboring square, i.e. the square with which it shares the page). Note: L-Dominoes can be rotated as well as flipped, giving an symmetrical figure wrt axis compared to the one shown in the picture.

2017 Greece JBMO TST, 4

Let $ABC$ be an equilateral triangle of side length $a$, and consider $D$, $E$ and $F$ the midpoints of the sides $(AB), (BC)$, and $(CA)$, respectively. Let $H$ be the the symmetrical of $D$ with respect to the line $BC$. Color the points $A, B, C, D, E, F, H$ with one of the two colors, red and blue. [list=1] [*] How many equilateral triangles with all the vertices in the set $\{A, B, C, D, E, F, H\}$ are there? [*] Prove that if points $B$ and $E$ are painted with the same color, then for any coloring of the remaining points there is an equilateral triangle with vertices in the set $\{A, B, C, D, E, F, H\}$ and having the same color. [*] Does the conclusion of the second part remain valid if $B$ is blue and $E$ is red? [/list]

2015 Balkan MO Shortlist, N6

Prove that among $20$ consecutive positive integers there is an integer $d$ such that for every positive integer $n$ the following inequality holds $$n \sqrt{d} \left\{n \sqrt {d} \right \} > \dfrac{5}{2}$$ where by $\left \{x \right \}$ denotes the fractional part of the real number $x$. The fractional part of the real number $x$ is defined as the difference between the largest integer that is less than or equal to $x$ to the actual number $x$. [i](Serbia)[/i]

Kettering MO, 2018

[b]p1.[/b] Solve the equation: $\sqrt{x} +\sqrt{x + 1} - \sqrt{x + 2} = 0$. [b]p2.[/b] Solve the inequality: $\ln (x^2 + 3x + 2) \le 0$. [b]p3.[/b] In the trapezoid $ABCD$ ($AD \parallel BC$) $|AD|+|AB| = |BC|+|CD|$. Find the ratio of the length of the sides $AB$ and $CD$ ($|AB|/|CD|$). [b]p4.[/b] Gollum gave Bilbo a new riddle. He put $64$ stones that are either white or black on an $8 \times 8$ chess board (one piece per each of $64$ squares). At every move Bilbo can replace all stones of any horizontal or vertical row by stones of the opposite color (white by black and black by white). Bilbo can make as many moves as he needs. Bilbo needs to get a position when in every horizontal and in every vertical row the number of white stones is greater than or equal to the number of black stones. Can Bilbo solve the riddle and what should be his solution? [b]p5.[/b] Two trolls Tom and Bert caught Bilbo and offered him a game. Each player got a bag with white, yellow, and black stones. The game started with Tom putting some number of stones from his bag on the table, then Bert added some number of stones from his bag, and then Bilbo added some stones from his bag. After that three players started making moves. At each move a player chooses two stones of different colors, takes them away from the table, and puts on the table a stone of the color different from the colors of chosen stones. Game ends when stones of one color only remain on the table. If the remaining stones are white Tom wins and eats Bilbo, if they are yellow, Bert wins and eats Bilbo, if they are black, Bilbo wins and is set free. Can you help Bilbo to save his life by offering him a winning strategy? [b]p6.[/b] There are four roads in Mirkwood that are straight lines. Bilbo, Gandalf, Legolas, and Thorin were travelling along these roads, each along a different road, at a different constant speed. During their trips Bilbo met Gandalf, and both Bilbo and Gandalf met Legolas and Thorin, but neither three of them met at the same time. When meeting they did not stop and did not change the road, the speed, and the direction. Did Legolas meet Thorin? Justify your answer. PS. You should use hide for answers.

2000 Belarusian National Olympiad, 5

Nine points are given on a plane, no three of which lie on a line. Any two of these points are joined by a segment. Is it possible to color these segments by several colors in such a way that, for each color, there are exactly three segments of that color and these three segments form a triangle?

2024 Durer Math Competition Finals, 6

On a $1\times n$ board there are $n-1$ separating edges between neighbouring cells. Initially, none of the edges contain matches. During a move of size $0 < k < n$ a player chooses a $1\times k$ sub-board which contains no matches inside, and places a matchstick on all of the separating edges bordering the sub-board that don’t already have one. A move is considered legal if at least one matchstick can be placed and if either $k = 1$ or $k{}$ is divisible by 4. Two players take turns making moves, the player in turn must choose one of the available legal moves of the largest size $0 < k < n$ and play it. If someone does not have a legal move, the game ends and that player loses. [i]Beat the organisers twice in a row in this game! First the organisers determine the value of $n{}$, then you get to choose whether you want to play as the first or the second player.[/i]

2021 Indonesia TST, C

In a country, there are $2018$ cities, some of which are connected by roads. Each city is connected to at least three other cities. It is possible to travel from any city to any other city using one or more roads. For each pair of cities, consider the shortest route between these two cities. What is the greatest number of roads that can be on such a shortest route?

2018 SIMO, Q1

Tags: grid , combinatorics , game
Sheldon and Bella play a game on an infinite grid of cells. On each of his turns, Sheldon puts one of the following tetrominoes (reflections and rotations aren't permitted) [asy] size(200); draw((0, 0)--(1, 0)--(1, 2)--(0, 2)--cycle); draw((1, 1)--(2, 1)--(2, 3)--(1, 3)--cycle); draw((0,1)--(1,1)); draw((1,2)--(2,2)); draw((5, 0.5)--(6, 0.5)--(6, 1.5)--(5, 1.5)--cycle); draw((6, 0.5)--(7, 0.5)--(7, 1.5)--(6, 1.5)--cycle); draw((6, 1.5)--(7, 1.5)--(7, 2.5)--(6, 2.5)--cycle); draw((7, 1.5)--(8, 1.5)--(8, 2.5)--(7, 2.5)--cycle); [/asy] somewhere on the grid without overlap. Then, Bella colors that tetromino such that it has a different color from any other tetromino that shares a side with it. After $2631$ such moves by each player, the game ends, and Sheldon's score is the number of colors used by Bella. What's the maximum $N$ such that Sheldon can guarantee that his score will be at least $N$?