This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 14842

2021 BMT, 23

Shivani has a single square with vertices labeled $ABCD$. She is able to perform the following transformations: $\bullet$ She does nothing to the square. $\bullet$ She rotates the square by $90$, $180$, or $270$ degrees. $\bullet$ She reflects the square over one of its four lines of symmetry. For the first three timesteps, Shivani only performs reflections or does nothing. Then for the next three timesteps, she only performs rotations or does nothing. She ends up back in the square’s original configuration. Compute the number of distinct ways she could have achieved this.

1976 Poland - Second Round, 6

Six points are placed on the plane such that each three of them are the vertices of a triangle with sides of different lengths. Prove that the shortest side of one of these triangles is also the longest side of another of them.

1978 Miklós Schweitzer, 3

Let $ 1<a_1<a_2< \ldots <a_n<x$ be positive integers such that $ \sum_{i\equal{}1}^n 1/a_i \leq 1$. Let $ y$ denote the number of positive integers smaller that $ x$ not divisible by any of the $ a_i$. Prove that \[ y > \frac{cx}{\log x}\] with a suitable positive constant $ c$ (independent of $ x$ and the numbers $ a_i$). [i]I. Z. Ruzsa[/i]

2007 China Team Selection Test, 2

Given an integer $ k > 1.$ We call a $ k \minus{}$digits decimal integer $ a_{1}a_{2}\cdots a_{k}$ is $ p \minus{}$monotonic, if for each of integers $ i$ satisfying $ 1\le i\le k \minus{} 1,$ when $ a_{i}$ is an odd number, $ a_{i} > a_{i \plus{} 1};$ when $ a_{i}$ is an even number, $ a_{i}<a_{i \plus{} 1}.$ Find the number of $ p \minus{}$monotonic $ k \minus{}$digits integers.

1984 Kurschak Competition, 2

$A_1B_1A_2$, $B_1A_2B_2$, $A_2B_2A_3$,...,$B_{13}A_{14}B_{14}$, $A_{14}B_{14}A_1$ and $B_{14}A_1B_1$ are equilateral rigid plates that can be folded along the edges $A_1B_1$,$B_1A_2$, ..., $A_{14}B_{14}$ and $B_{14}A_1$ respectively. Can they be folded so that all $28$ plates lie in the same plane?

2012 Tournament of Towns, 7

Konstantin has a pile of $100$ pebbles. In each move, he chooses a pile and splits it into two smaller ones until he gets $100 $ piles each with a single pebble. (a) Prove that at some point, there are $30$ piles containing a total of exactly $60$ pebbles. (b) Prove that at some point, there are $20$ piles containing a total of exactly $60$ pebbles. (c) Prove that Konstantin may proceed in such a way that at no point, there are $19$ piles containing a total of exactly $60$ pebbles.

2008 Peru IMO TST, 5

When we cut a rope into two pieces, we say that the cut is special if both pieces have different lengths. We cut a chord of length $2008$ into two pieces with integer lengths and we write those lengths on the board. Afterwards, we cut one of the pieces into two new pieces with integer lengths and we write those lengths on the board. This process ends until all pieces have length $1$. $a)$ Find the minimum possible number of special cuts. $b)$ Prove that, for all processes that have the minimum possible number of special cuts, the number of different integers on the board is always the same.

2015 China Team Selection Test, 2

Let $G$ be the complete graph on $2015$ vertices. Each edge of $G$ is dyed red, blue or white. For a subset $V$ of vertices of $G$, and a pair of vertices $(u,v)$, define \[ L(u,v) = \{ u,v \} \cup \{ w | w \in V \ni \triangle{uvw} \text{ has exactly 2 red sides} \}\]Prove that, for any choice of $V$, there exist at least $120$ distinct values of $L(u,v)$.

2022 Latvia Baltic Way TST, P8

Call the intersection of two segments [i]almost perfect[/i] if for each of the segments the distance between the midpoint of the segment and the intersection is at least $2022$ times smaller than the length of the segment. Prove that there exists a closed broken line of segments such that every segment intersects at least one other segment, and every intersection of segments is [i]almost perfect[/i].

2021 Auckland Mathematical Olympiad, 5

There are $13$ stones each of which weighs an integer number of grams. It is known that any $12$ of them can be put on two pans of a balance scale, six on each pan, so that they are in equilibrium (i.e., each pan will carry an equal total weight). Prove that either all stones weigh an even number of grams or all stones weigh an odd number of grams.

1995 May Olympiad, 1

The management of a secret society is made up of $4$ people. To admit new partners they use the following criteria: $\bullet$ Only the $4$ members of the directory vote, being able to do it in $3$ ways: in favor, against or abstaining. $\bullet$ Each aspiring partner must obtain at least $2$ votes in favor and none against. At the last management meeting, $8$ requests for admission were examined. Of the total votes cast, there were $23$ votes in favor, $2$ votes against and $7$ abstaining. What is the highest and what is the lowest value that the number of approved admission requests can have on that occasion?

2024 Romania Team Selection Tests, P4

Let $m$ and $n$ be positive integers greater than $1$. In each unit square of an $m\times n$ grid lies a coin with its tail side up. A [i]move[/i] consists of the following steps. [list=1] [*]select a $2\times 2$ square in the grid; [*]flip the coins in the top-left and bottom-right unit squares; [*]flip the coin in either the top-right or bottom-left unit square. [/list] Determine all pairs $(m,n)$ for which it is possible that every coin shows head-side up after a finite number of moves. [i]Thanasin Nampaisarn, Thailand[/i]

2011 Finnish National High School Mathematics Competition, 5

Two players, the builder and the destroyer, plays the following game. Builder starts and players chooses alternatively different elements from the set $\{0,1,\ldots,10\}.$ Builder wins if some four integer of those six integer he chose forms an arithmetic sequence. Destroyer wins if he can prevent to form such an arithmetic four-tuple. Which one has a winning strategy?

1998 All-Russian Olympiad, 5

Initially the numbers $19$ and $98$ are written on a board. Every minute, each of the two numbers is either squared or increased by $1$. Is it possible to obtain two equal numbers at some time?

2018 EGMO, 3

The $n$ contestant of EGMO are named $C_1, C_2, \cdots C_n$. After the competition, they queue in front of the restaurant according to the following rules. [list] [*]The Jury chooses the initial order of the contestants in the queue. [*]Every minute, the Jury chooses an integer $i$ with $1 \leq i \leq n$. [list] [*]If contestant $C_i$ has at least $i$ other contestants in front of her, she pays one euro to the Jury and moves forward in the queue by exactly $i$ positions. [*]If contestant $C_i$ has fewer than $i$ other contestants in front of her, the restaurant opens and process ends. [/list] [/list] [list=a] [*]Prove that the process cannot continue indefinitely, regardless of the Jury’s choices. [*]Determine for every $n$ the maximum number of euros that the Jury can collect by cunningly choosing the initial order and the sequence of moves. [/list]

1989 IMO Longlists, 44

Given two distinct numbers $ b_1$ and $ b_2$, their product can be formed in two ways: $ b_1 \times b_2$ and $ b_2 \times b_1.$ Given three distinct numbers, $ b_1, b_2, b_3,$ their product can be formed in twelve ways: $ b_1\times(b_2 \times b_3);$ $ (b_1 \times b_2) \times b_3;$ $ b_1 \times (b_3 \times b_2);$ $ (b_1 \times b_3) \times b_2;$ $ b_2 \times (b_1 \times b_3);$ $ (b_2 \times b_1) \times b_3;$ $ b_2 \times(b_3 \times b_1);$ $ (b_2 \times b_3)\times b_1;$ $ b_3 \times(b_1 \times b_2);$ $ (b_3 \times b_1)\times b_2;$ $ b_3 \times(b_2 \times b_1);$ $ (b_3 \times b_2) \times b_1.$ In how many ways can the product of $ n$ distinct letters be formed?

2009 Junior Balkan Team Selection Tests - Moldova, 8

Side of an equilatreal triangle has the length $n\in\mathbb{N}.$ Each side is divided in $ n $ equal segments by division points. A line parallel with the third side of the triangle is drawn through the division points of every two sides. Let $c_n$ be the number of all rhombuses with sidelength $1$ inside the initial triangle. Prove that the greatest solution $ n $ of the inequation $c_n<2009$ is a prime number.

1997 IMO Shortlist, 1

In the plane the points with integer coordinates are the vertices of unit squares. The squares are coloured alternately black and white (as on a chessboard). For any pair of positive integers $ m$ and $ n$, consider a right-angled triangle whose vertices have integer coordinates and whose legs, of lengths $ m$ and $ n$, lie along edges of the squares. Let $ S_1$ be the total area of the black part of the triangle and $ S_2$ be the total area of the white part. Let $ f(m,n) \equal{} | S_1 \minus{} S_2 |$. a) Calculate $ f(m,n)$ for all positive integers $ m$ and $ n$ which are either both even or both odd. b) Prove that $ f(m,n) \leq \frac 12 \max \{m,n \}$ for all $ m$ and $ n$. c) Show that there is no constant $ C\in\mathbb{R}$ such that $ f(m,n) < C$ for all $ m$ and $ n$.

1985 IMO Longlists, 45

Two persons, $X$ and $Y$ , play with a die. $X$ wins a game if the outcome is $1$ or $2$; $Y$ wins in the other cases. A player wins a match if he wins two consecutive games. For each player determine the probability of winning a match within $5$ games. Determine the probabilities of winning in an unlimited number of games. If $X$ bets $1$, how much must $Y$ bet for the game to be fair ?

2017 China Team Selection Test, 3

Find the numbers of ordered array $(x_1,...,x_{100})$ that satisfies the following conditions: ($i$)$x_1,...,x_{100}\in\{1,2,..,2017\}$; ($ii$)$2017|x_1+...+x_{100}$; ($iii$)$2017|x_1^2+...+x_{100}^2$.

2024 Korea Junior Math Olympiad (First Round), 8.

Find the number of 4 digit positive integers '$n$' that follow these. 1) the number of digit $ \le $ 6 2) $ 3 \mid n$, but $ 6 \nmid n $

2007 All-Russian Olympiad, 3

Arutyun and Amayak show another effective trick. A spectator writes down on a board a sequence of $N$ (decimal) digits. Amayak closes two adjacent digits by a black disc. Then Arutyun comes and says both closed digits (and their order). For which minimal $N$ they may show such a trick? [i]K. Knop, O. Leontieva[/i]

1994 China National Olympiad, 2

There are $m$ pieces of candy held in $n$ trays($n,m\ge 4$). An [i]operation[/i] is defined as follow: take out one piece of candy from any two trays respectively, then put them in a third tray. Determine, with proof, if we can move all candies to a single tray by finite [i]operations[/i].

2022 Azerbaijan IMO TST, 5

For each integer $n\ge 1,$ compute the smallest possible value of \[\sum_{k=1}^{n}\left\lfloor\frac{a_k}{k}\right\rfloor\] over all permutations $(a_1,\dots,a_n)$ of $\{1,\dots,n\}.$ [i]Proposed by Shahjalal Shohag, Bangladesh[/i]

2019 OMMock - Mexico National Olympiad Mock Exam, 5

There are $n\geq 2$ people at a party. Each person has at least one friend inside the party. Show that it is possible to choose a group of no more than $\frac{n}{2}$ people at the party, such that any other person outside the group has a friend inside it.