This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2022 Serbia National Math Olympiad, P5

On the board are written $n$ natural numbers, $n\in \mathbb{N}$. In one move it is possible to choose two equal written numbers and increase one by $1$ and decrease the other by $1$. Prove that in this the game cannot be played more than $\frac{n^3}{6}$ moves.

2025 Bulgarian Winter Tournament, 11.3

We have \( n \) chips that are initially placed on the number line at position 0. On each move, we select a position \( x \in \mathbb{Z} \) where there are at least two chips; we take two of these chips, then place one at \( x-1 \) and the other at \( x+1 \). a) Prove that after a finite number of moves, regardless of how the moves are chosen, we will reach a final position where no two chips occupy the same number on the number line. b) For every possible final position, let \( \Delta \) represent the difference between the numbers where the rightmost and the leftmost chips are located. Find all possible values of \( \Delta \) in terms of \( n \).