Found problems: 11
1985 Spain Mathematical Olympiad, 5
Find the equation of the circle in the complex plane determined by the roots of the equation $z^3 +(-1+i)z^2+(1-i)z+i= 0$.
2010 Gheorghe Vranceanu, 2
Let be three complex numbers $ z,t,u, $ whose affixes in the complex plane form a triangle $ \triangle . $
[b]a)[/b] Let be three non-complex numbers $ a,b,c $ that sum up to $ 0. $ Prove that
$$ |az+bt+cu|=|at+bu+cz|=|au+bz+ct| $$
if $ \triangle $ is equilateral.
[b]b)[/b] Show that $ \triangle $ is equilateral if
$$ |z+2t-3u|=|t+2u-3z|=|u+2z-3t| . $$
2005 Gheorghe Vranceanu, 2
Prove that the sum of the $ \text{2005-th} $ powers of three pairwise distinct complex numbers is the imaginary unit if their modulus are equal and the sum of these numbers is the imaginary unit.
2016 Romania National Olympiad, 3
[b]a)[/b] Let be two nonzero complex numbers $ a,b. $ Show that the area of the triangle formed by the representations of the affixes $ 0,a,b $ in the complex plane is $ \frac{1}{4}\left| \overline{a} b-a\overline{b} \right| . $
[b]b)[/b] Let be an equilateral triangle $ ABC, $ its circumcircle $ \mathcal{C} , $ its circumcenter $ O, $ and two distinct points $ P_1,P_2 $ in the interior of $ \mathcal{C} . $ Prove that we can form two triangles with sides $ P_1A,P_1B,P_1C, $ respectively, $ P_2A,P_2B,P_2C, $ whose areas are equal if and only if $ OP_1=OP_2. $
2007 Gheorghe Vranceanu, 2
Let be a natural number $ n\ge 2 $ and an imaginary number $ z $ having the property that $ |z-1|=|z+1|\cdot\sqrt[n]{2} . $ Denote with $ A,B,C $ the points in the Euclidean plane whose representation in the complex plane are the affixes of $
z,\frac{1-\sqrt[n]{2}}{1+\sqrt[n]{2}} ,\frac{1+\sqrt[n]{2}}{1-\sqrt[n]{2}} , $ respectively. Prove that $ AB $ is perpendicular to $ AC. $
2003 Romania National Olympiad, 3
Let be a circumcircle of radius $ 1 $ of a triangle whose centered representation in the complex plane is given by the affixes of $ a,b,c, $ and for which the equation $ a+b\cos x +c\sin x=0 $ has a real root in $ \left( 0,\frac{\pi }{2} \right) . $ prove that the area of the triangle is a real number from the interval $ \left( 1,\frac{1+\sqrt 2}{2} \right] . $
[i]Gheorghe Iurea[/i]
2019 Romanian Masters In Mathematics, 2
Let $ABCD$ be an isosceles trapezoid with $AB\parallel CD$. Let $E$ be the midpoint of $AC$. Denote by $\omega$ and $\Omega$ the circumcircles of the triangles $ABE$ and $CDE$, respectively. Let $P$ be the crossing point of the tangent to $\omega$ at $A$ with the tangent to $\Omega$ at $D$. Prove that $PE$ is tangent to $\Omega$.
[i]Jakob Jurij Snoj, Slovenia[/i]
2019 Romanian Master of Mathematics, 2
Let $ABCD$ be an isosceles trapezoid with $AB\parallel CD$. Let $E$ be the midpoint of $AC$. Denote by $\omega$ and $\Omega$ the circumcircles of the triangles $ABE$ and $CDE$, respectively. Let $P$ be the crossing point of the tangent to $\omega$ at $A$ with the tangent to $\Omega$ at $D$. Prove that $PE$ is tangent to $\Omega$.
[i]Jakob Jurij Snoj, Slovenia[/i]
2003 Gheorghe Vranceanu, 3
Let $ z_1,z_2,z_3 $ be nonzero complex numbers and pairwise distinct, having the property that $\left( z_1+z_2\right)^3 =\left( z_2+z_3\right)^3 =\left( z_3+z_1\right)^3. $ Show that $ \left| z_1-z_2\right| =\left| z_2-z_3\right| =\left| z_3-z_1\right| . $
2016 Mathematical Talent Reward Programme, MCQ: P 5
$ABCD$ is a quadrilateral on complex plane whose four vertices satisfy $z^4+z^3+z^2+z+1=0$. Then $ABCD$ is a
[list=1]
[*] Rectangle
[*] Rhombus
[*] Isosceles Trapezium
[*] Square
[/list]
2019 Romania National Olympiad, 3
Find all natural numbers $ n\ge 4 $ that satisfy the property that the affixes of any nonzero pairwise distinct complex numbers $ a,b,c $ that verify the equation
$$ (a-b)^n+(b-c)^n+(c-a)^n=0, $$
represent the vertices of an equilateral triangle in the complex plane.