This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

1990 Romania Team Selection Test, 4

Let $M$ be a point on the edge $CD$ of a tetrahedron $ABCD$ such that the tetrahedra $ABCM$ and $ABDM$ have the same total areas. We denote by $\pi_{AB}$ the plane $ABM$. Planes $\pi_{AC},...,\pi_{CD}$ are analogously defined. Prove that the six planes $\pi_{AB},...,\pi_{CD}$ are concurrent in a certain point $N$, and show that $N$ is symmetric to the incenter $I$ with respect to the barycenter $G$.

1991 Romania Team Selection Test, 2

Let $A_1A_2A_3A_4$ be a tetrahedron. For any permutation $(i, j,k,h)$ of $1,2,3,4$ denote: - $P_i$ – the orthogonal projection of $A_i$ on $A_jA_kA_h$; - $B_{ij}$ – the midpoint of the edge $A_iAj$, - $C_{ij}$ – the midpoint of segment $P_iP_j$ - $\beta_{ij}$– the plane $B_{ij}P_hP_k$ - $\delta_{ij}$ – the plane $B_{ij}P_iP_j$ - $\alpha_{ij}$ – the plane through $C_{ij}$ orthogonal to $A_kA_h$ - $\gamma_{ij}$ – the plane through $C_{ij}$ orthogonal to $A_iA_j$. Prove that if the points $P_i$ are not in a plane, then the following sets of planes are concurrent: (a) $\alpha_{ij}$, (b) $\beta_{ij}$, (c) $\gamma_{ij}$, (d) $\delta_{ij}$.