This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2024 Yasinsky Geometry Olympiad, 1

Let \( I \) and \( O \) be the incenter and circumcenter of the right triangle \( ABC \) (\( \angle C = 90^\circ \)), and let \( K \) be the tangency point of the incircle with \( AC \). Let \( P \) and \( Q \) be the points where the circumcircle of triangle \( AOK \) intersects \( OC \) and the circumcircle of triangle \( ABC \), respectively. Prove that points \( C, I, P, \) and \( Q \) are concyclic. [i]Proposed by Mykhailo Sydorenko[/i]