This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 110

2010 Dutch Mathematical Olympiad, 2

A number is called polite if it can be written as $ m + (m+1)+...+ n$, for certain positive integers $ m <n$ . For example: $18$ is polite, since $18 =5 + 6 + 7$. A number is called a power of two if it can be written as $2^{\ell}$ for some integer $\ell \ge 0$. (a) Show that no number is both polite and a power of two. (b) Show that every positive integer is polite or a power of two.

2009 Danube Mathematical Competition, 2

Prove that all the positive integer numbers , except for the powers of $2$, can be written as the sum of (at least two) consecutive natural numbers .

2016 Bundeswettbewerb Mathematik, 1

There are $\tfrac{n(n+1)}{2}$ distinct sums of two distinct numbers, if there are $n$ numbers. For which $n \ (n \geq 3)$ do there exist $n$ distinct integers, such that those sums are $\tfrac{n(n-1)}{2}$ consecutive numbers?

1984 Tournament Of Towns, (071) T5

Prove that among $18$ consecutive three digit numbers there must be at least one which is divisible by the sum of its digits.

2017 Latvia Baltic Way TST, 4

The values of the polynomial $P(x) = 2x^3-30x^2+cx$ for any three consecutive integers are also three consecutive integers. Find these values.

2000 Tournament Of Towns, 5

What is the largest number $N$ for which there exist $N$ consecutive positive integers such that the sum of the digits in the $k$-th integer is divisible by $k$ for $1 \le k \le N$ ? (S Tokarev)

1998 Mexico National Olympiad, 1

A number is called lucky if computing the sum of the squares of its digits and repeating this operation sufficiently many times leads to number $1$. For example, $1900$ is lucky, as $1900 \to 82 \to 68 \to 100 \to 1$. Find infinitely many pairs of consecutive numbers each of which is lucky.

2013 Costa Rica - Final Round, LRP2

From a set containing $6$ positive and consecutive integers they are extracted, randomly and with replacement, three numbers $a, b, c$. Determine the probability that even $a^b + c$ generates as a result .

2014 JBMO Shortlist, 6

Vukasin, Dimitrije, Dusan, Stefan and Filip asked their teacher to guess three consecutive positive integers, after these true statements: Vukasin: " The sum of the digits of one number is prime number. The sum of the digits of another of the other two is, an even perfect number.($n$ is perfect if $\sigma\left(n\right)=2n$). The sum of the digits of the third number equals to the number of it's positive divisors". Dimitrije:"Everyone of those three numbers has at most two digits equal to $1$ in their decimal representation". Dusan:"If we add $11$ to exactly one of them, then we have a perfect square of an integer" Stefan:"Everyone of them has exactly one prime divisor less than $10$". Filip:"The three numbers are square free". Professor found the right answer. Which numbers did he mention?

2009 All-Russian Olympiad Regional Round, 10.2

Prove that there is a natural number $n > 1$ such that the product of some $n$ consecutive natural numbers is equal to the product of some $n + 100$ consecutive natural numbers.