This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 53

2019 Centers of Excellency of Suceava, 2

Let be two real numbers $ b>a>0, $ and a sequence $ \left( x_n \right)_{n\ge 1} $ with $ x_2>x_1>0 $ and such that $$ ax_{n+2}+bx_n\ge (a+b)x_{n+1} , $$ for any natural numbers $ n. $ Prove that $ \lim_{n\to\infty } x_n=\infty . $ [i]Dan Popescu[/i]

2023 Brazil Undergrad MO, 2

Let $a_n = \frac{1}{\binom{2n}{n}}, \forall n \leq 1$. a) Show that $\sum\limits_{n=1}^{+\infty}a_nx^n$ converges for all $x \in (-4, 4)$ and that the function $f(x) = \sum\limits_{n=1}^{+\infty}a_nx^n$ satisfies the differential equation $x(x - 4)f'(x) + (x + 2)f(x) = -x$. b) Prove that $\sum\limits_{n=1}^{+\infty}\frac{1}{\binom{2n}{n}} = \frac{1}{3} + \frac{2\pi\sqrt{3}}{27}$.

1952 Putnam, B5

If the terms of a sequence $a_{1}, a_{2}, \ldots$ are monotonic, and if $\sum_{n=1}^{\infty} a_n$ converges, show that $\sum_{n=1}^{\infty} n(a_{n} -a_{n+1 })$ converges.