This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 53

2021 Romanian Master of Mathematics Shortlist, A4

Let $f: \mathbb{R} \to \mathbb{R}$ be a non-decreasing function such that $f(y) - f(x) < y - x$ for all real numbers $x$ and $y > x$. The sequence $u_1,u_2,\ldots$ of real numbers is such that $u_{n+2} = f(u_{n+1}) - f(u_n)$ for all $n\geq 1$. Prove that for any $\varepsilon > 0$ there exists a positive integer $N$ such that $|u_n| < \varepsilon$ for all $n\geq N$.

2019 IMC, 7

Let $C=\{4,6,8,9,10,\ldots\}$ be the set of composite positive integers. For each $n\in C$ let $a_n$ be the smallest positive integer $k$ such that $k!$ is divisible by $n$. Determine whether the following series converges: $$\sum_{n\in C}\left(\frac{a_n}{n}\right)^n.$$ [i]Proposed by Orif Ibrogimov, ETH Zurich and National University of Uzbekistan[/i]

2024 CIIM, 6

Given a real number $x$, define the series \[ S(x) = \sum_{n=1}^{\infty} \{n! \cdot x\}, \] where $\{s\} = s - \lfloor s \rfloor$ is the fractional part of the number $s$. Determine if there exists an irrational number $x$ for which the series $S(x)$ converges.

1973 Putnam, A2

Consider an infinite series whose $n$-th term is $\pm (1\slash n)$, the $\pm$ signs being determined according to a pattern that repeats periodically in blocks of eight (there are $2^{8}$ possible patterns). (a) Show that a sufficient condition for the series to be conditionally convergent is that there are four "$+$" signs and four "$-$" signs in the block of eight signs. (b) Is this sufficient condition also necessary?

2016 ISI Entrance Examination, 8

Suppose that $(a_n)_{n\geq 1}$ is a sequence of real numbers satisfying $a_{n+1} = \frac{3a_n}{2+a_n}$. (i) Suppose $0 < a_1 <1$, then prove that the sequence $a_n$ is increasing and hence show that $\lim_{n \to \infty} a_n =1$. (ii) Suppose $ a_1 >1$, then prove that the sequence $a_n$ is decreasing and hence show that $\lim_{n \to \infty} a_n =1$.

2005 Gheorghe Vranceanu, 4

Let be a sequence of real numbers $ \left( x_n \right)_{n\geqslant 0} $ with $ x_0\neq 0,1 $ and defined as $ x_{n+1}=x_n+x_n^{-1/x_0} . $ [b]a)[/b] Show that the sequence $ \left( x_n\cdot n^{-\frac{x_0}{1+x_0}} \right)_{n\geqslant 0} $ is convergent. [b]b)[/b] Prove that $ \inf_{x_0\neq 0,1} \lim_{n\to\infty } x_n\cdot n^{-\frac{x_0}{1+x_0}} =1. $

2018 District Olympiad, 3

Let $(a_n)_{n\ge 1}$ be a sequence such that $a_n > 1$ and $a_{n+1}^2 \ge a_n a_{n + 2}$, for any $n\ge 1$. Show that the sequence $(x_n)_{n\ge 1}$ given by $x_n = \log_{a_n} a_{n + 1}$ for $n\ge 1$ is convergent and compute its limit.

2010 VJIMC, Problem 1

a) Is it true that for every bijection $f:\mathbb N\to\mathbb N$ the series $$\sum_{n=1}^\infty\frac1{nf(n)}$$is convergent? b) Prove that there exists a bijection $f:\mathbb N\to\mathbb N$ such that the series $$\sum_{n=1}^\infty\frac1{n+f(n)}$$is convergent. ($\mathbb N$ is the set of all positive integers.)

Kvant 2020, M365

[list=a] [*]The sum of several numbers is equal to one. Can the sum of their cubes be greater than one? [*]The same question as before, for numbers not exceeding one. [*]Can it happen that the series $a_1+a_2+\cdots$ converges, but the series $a_1^3+a_2^3+\cdots$ diverges? [/list]

2021 SEEMOUS, Problem 4

For $p \in \mathbb{R}$, let $(a_n)_{n \ge 1}$ be the sequence defined by \[ a_n=\frac{1}{n^p} \int_0^n |\sin( \pi x)|^x \mathrm dx. \] Determine all possible values of $p$ for which the series $\sum_{n=1}^\infty a_n$ converges.

2001 SNSB Admission, 2

Let be a number $ a\in \left[ 1,\infty \right) $ and a function $ f\in\mathcal{C}^2(-a,a) . $ Show that the sequence $$ \left( \sum_{k=1}^n f\left( \frac{k}{n^2} \right) \right)_{n\ge 1} $$ is convergent, and determine its limit.

2003 IMC, 6

Let $(a_{n})$ be the sequence defined by $a_{0}=1,a_{n+1}=\sum_{k=0}^{n}\dfrac{a_k}{n-k+2}$. Find the limit \[\lim_{n \rightarrow \infty} \sum_{k=0}^{n}\dfrac{a_{k}}{2^{k}},\] if it exists.

2012 SEEMOUS, Problem 2

Let $a_n>0$, $n\ge1$. Consider the right triangles $\triangle A_0A_1A_2$, $\triangle A_0A_2A_3,\ldots$, $\triangle A_0A_{n-1}A_n,\ldots,$ as in the figure. (More precisely, for every $n\ge2$ the hypotenuse $A_0A_n$ of $\triangle A_0A_{n-1}A_n$ is a leg of $\triangle A_0A_nA_{n+1}$ with right angle $\angle A_0A_nA_{n+1}$, and the vertices $A_{n-1}$ and $A_{n+1}$ lie on the opposite sides of the straight line $A_0A_n$; also, $|A_{n-1}A_n|=a_n$ for every $n\ge1$.) [img]https://services.artofproblemsolving.com/download.php?id=YXR0YWNobWVudHMvYi8yL2M1ZjAxM2I1ZWU0N2E4MzQyYWIzNmQ5OGM3NjJlZjljODdmMTliLnBuZw==&rn=U0VFTU9VUyAyMDEyLnBuZw==[/img] Is it possible for the set of points $\{A_n\mid n\ge0\}$ to be unbounded but the series $\sum_{n=2}^\infty m\angle A_{n-1}A_0A_n$ to be convergent? [i]Note.[/i] A subset $B$ of the plane is bounded if and only if there is a disk $D$ such that $B\subseteq D$.

2025 VJIMC, 3

Let us call a sequence $(b_1, b_2, \ldots)$ of positive integers fast-growing if $b_{n+1} \geq b_n + 2$ for all $n \geq 1$. Also, for a sequence $a = (a(1), a(2), \ldots)$ of real numbers and a sequence $b = (b_1, b_2, \ldots)$ of positive integers, let us denote \[ S(a, b) = \sum_{n=1}^{\infty} \left| a(b_n) + a(b_n + 1) + \cdots + a(b_{n+1} - 1) \right|. \] a) Do there exist two fast-growing sequences $b = (b_1, b_2, \ldots)$, $c = (c_1, c_2, \ldots)$ such that for every sequence $a = (a(1), a(2), \ldots)$, if all the series \[ \sum_{n=1}^{\infty} a(n), \quad S(a, b) \quad \text{and} \quad S(a, c) \] are convergent, then the series $\sum_{n=1}^{\infty} |a(n)|$ is also convergent? b) Do there exist three fast-growing sequences $b = (b_1, b_2, \ldots)$, $c = (c_1, c_2, \ldots)$, $d = (d_1, d_2, \ldots)$ such that for every sequence $a = (a(1), a(2), \ldots)$, if all the series \[ S(a, b), \quad S(a, c) \quad \text{and} \quad S(a, d) \] are convergent, then the series $\sum_{n=1}^{\infty} |a(n)|$ is also convergent?

2018 VTRMC, 7

A continuous function $f : [a,b] \to [a,b]$ is called piecewise monotone if $[a, b]$ can be subdivided into finitely many subintervals $$I_1 = [c_0,c_1], I_2 = [c_1,c_2], \dots , I_\ell = [ c_{\ell - 1},c_\ell ]$$ such that $f$ restricted to each interval $I_j$ is strictly monotone, either increasing or decreasing. Here we are assuming that $a = c_0 < c_1 < \cdots < c_{\ell - 1} < c_\ell = b$. We are also assuming that each $I_j$ is a maximal interval on which $f$ is strictly monotone. Such a maximal interval is called a lap of the function $f$, and the number $\ell = \ell (f)$ of distinct laps is called the lap number of $f$. If $f : [a,b] \to [a,b]$ is a continuous piecewise-monotone function, show that the sequence $( \sqrt[n]{\ell (f^n )})$ converges; here $f^n$ means $f$ composed with itself $n$-times, so $f^2 (x) = f(f(x))$ etc.

1953 Putnam, B1

Is the infinite series $$\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$$ convergent?

2019 District Olympiad, 1

Let $(a_n)_{n \ge 1}$ be a sequence of positive real numbers such that the sequence $(a_{n+1}-a_n)_{n \ge 1}$ is convergent to a non-zero real number. Evaluate the limit $$ \lim_{n \to \infty} \left( \frac{a_{n+1}}{a_n} \right)^n.$$

1942 Putnam, A3

Is the series $$\sum_{n=0}^{\infty} \frac{n!}{(n+1)^{n}}\cdot \left(\frac{19}{7}\right)^{n}$$ convergent or divergent?

2007 Grigore Moisil Intercounty, 4

Let $ \left( x_n \right)_{n\ge 1} $ be a sequence of positive real numbers, verifying the inequality $ x_n\le \frac{x_{n-1}+x_{n-2}}{2} , $ for any natural number $ n\ge 3. $ Show that $ \left( x_n \right)_{n\ge 1} $ is convergent.

2023 SEEMOUS, P4

Let $f:\mathbb{R}\to\mathbb{R}$ be a continuous, strictly decreasing function such that $f([0,1])\subseteq[0,1]$. [list=i] [*]For all positive integers $n{}$ prove that there exists a unique $a_n\in(0,1)$, solution of the equation $f(x)=x^n$. Moreover, if $(a_n){}$ is the sequence defined as above, prove that $\lim_{n\to\infty}a_n=1$. [*]Suppose $f$ has a continuous derivative, with $f(1)=0$ and $f'(1)<0$. For any $x\in\mathbb{R}$ we define \[F(x)=\int_x^1f(t) \ dt.\]Let $\alpha{}$ be a real number. Study the convergence of the series \[\sum_{n=1}^\infty F(a_n)^\alpha.\] [/list]

2019 District Olympiad, 4

Let $f: [0, \infty) \to [0, \infty)$ be a continuous function with $f(0)>0$ and having the property $$x-y<f(y)-f(x) \le 0~\forall~0 \le x<y.$$ Prove that: $a)$ There exists a unique $\alpha \in (0, \infty)$ such that $(f \circ f)(\alpha)=\alpha.$ $b)$ The sequence $(x_n)_{n \ge 1},$ defined by $x_1 \ge 0$ and $x_{n+1}=f(x_n)~\forall~n \in \mathbb{N}$ is convergent.

1940 Putnam, A7

Tags: convergence
If $\sum_{i=1}^{\infty} u_{i}^{2}$ and $\sum_{i=1}^{\infty} v_{i}^{2}$ are convergent series of real numbers, prove that $$\sum_{i=1}^{\infty}(u_{i}-v_{i})^{p}$$ is convergent, where $p\geq 2$ is an integer.

1964 Putnam, A3

Let $P_1 , P_2 , \ldots$ be a sequence of distinct points which is dense in the interval $(0,1)$. The points $P_1 , \ldots , P_{n-1}$ decompose the interval into $n$ parts, and $P_n$ decomposes one of these into two parts. Let $a_n$ and $b_n$ be the length of these two intervals. Prove that $$\sum_{n=1}^{\infty} a_n b_n (a_n +b_n) =1 \slash 3.$$

1988 Putnam, B4

Tags: convergence
Prove that if $\sum_{n=1}^\infty a_n$ is a convergent series of positive real numbers, then so is $\sum_{n=1}^\infty (a_n)^{n/(n+1)}$.

1952 Putnam, B7

Given any real number $N_0,$ if $N_{j+1}= \cos N_j ,$ prove that $\lim_{j\to \infty} N_j$ exists and is independent of $N_0.$