This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 9

1978 All Soviet Union Mathematical Olympiad, 255

Given a finite set $K_0$ of points (in the plane or space). The sequence of sets $K_1, K_2, ... , K_n, ...$ is constructed according to the rule: [i]we take all the points of $K_i$, add all the symmetric points with respect to all its points, and, thus obtain $K_{i+1}$.[/i] a) Let $K_0$ consist of two points $A$ and $B$ with the distance $1$ unit between them. For what $n$ the set $K_n$ contains the point that is $1000$ units far from $A$? b) Let $K_0$ consist of three points that are the vertices of the equilateral triangle with the unit square. Find the area of minimal convex polygon containing $K_n. K_0$ below is the set of the unit volume tetrahedron vertices. c) How many faces contain the minimal convex polyhedron containing $K_1$? d) What is the volume of the above mentioned polyhedron? e) What is the volume of the minimal convex polyhedron containing $K_n$?

2011 Tournament of Towns, 1

The faces of a convex polyhedron are similar triangles. Prove that this polyhedron has two pairs of congruent faces.

1999 Tournament Of Towns, 7

Prove that any convex polyhedron with $10n$ faces, has at least $n$ faces with the same number of sides. (A Kanel)

1987 All Soviet Union Mathematical Olympiad, 461

All the faces of a convex polyhedron are the triangles. Prove that it is possible to paint all its edges in red and blue colour in such a way, that it is possible to move from the arbitrary vertex to every vertex along the blue edges only and along the red edges only.

2012 Tournament of Towns, 1

Each vertex of a convex polyhedron lies on exactly three edges, at least two of which have the same length. Prove that the polyhedron has three edges of the same length.

1985 Tournament Of Towns, (105) 5

(a) The point $O$ lies inside the convex polygon $A_1A_2A_3...A_n$ . Consider all the angles $A_iOA_j$ where $i, j$ are distinct natural numbers from $1$ to $n$ . Prove that at least $n- 1$ of these angles are not acute . (b) Same problem for a convex polyhedron with $n$ vertices. (V. Boltyanskiy, Moscow)

2012 Tournament of Towns, 2

Given a convex polyhedron and a sphere intersecting each its edge at two points so that each edge is trisected (divided into three equal parts). Is it necessarily true that all faces of the polyhedron are (a) congruent polygons? (b) regular polygons?

1977 All Soviet Union Mathematical Olympiad, 241

Every vertex of a convex polyhedron belongs to three edges. It is possible to circumscribe a circle around all its faces. Prove that the polyhedron can be inscribed in a sphere.

1999 Tournament Of Towns, 1

A convex polyhedron is floating in a sea. Can it happen that $90\%$ of its volume is below the water level, while more than half of its surface area is above the water level? (A Shapovalov)