Found problems: 401
2015 AMC 10, 22
Eight people are sitting around a circular table, each holding a fair coin. All eight people flip their coins and those who flip heads stand while those who flip tails remain seated. What is the probability that no two adjacent people will stand?
$\textbf{(A) }\dfrac{47}{256}\qquad\textbf{(B) }\dfrac{3}{16}\qquad\textbf{(C) }\dfrac{49}{256}\qquad\textbf{(D) }\dfrac{25}{128}\qquad\textbf{(E) }\dfrac{51}{256}$
2020 AMC 10, 17
There are 10 people standing equally spaced around a circle. Each person knows exactly 3 of the other 9 people: the 2 people standing next to her or him, as well as the person directly across the circle. How many ways are there for the 10 people to split up into 5 pairs so that the members of each pair know each other?
$\textbf{(A) } 11 \qquad \textbf{(B) } 12 \qquad \textbf{(C) } 13 \qquad \textbf{(D) } 14 \qquad \textbf{(E) } 15$
1987 IMO Longlists, 19
How many words with $n$ digits can be formed from the alphabet $\{0, 1, 2, 3, 4\}$, if neighboring digits must differ by exactly one?
[i]Proposed by Germany, FR.[/i]
2018 India IMO Training Camp, 2
A $10$ digit number is called interesting if its digits are distinct and is divisible by $11111$. Then find the number of interesting numbers.
2016 BMT Spring, 4
Three $3$-legged (distinguishable) Stanfurdians take off their socks and trade them with each other. How many ways is this possible if everyone ends up with exactly $3$ socks and nobody gets any of their own socks? All socks originating from the Stanfurdians are distinguishable from each other. All Stanfurdian feet are indistinguishable from other feet of the same Stanfurdian.
2017 AMC 10, 10
Joy has $30$ thin rods, one each of every integer length from $1$ cm through $30$ cm. She places the rods with lengths $3$ cm, $7$ cm, and $15$ cm on a table. She then wants to choose a fourth rod that she can put with these three to form a quadrilateral with positive area. How many of the remaining rods can she choose as the fourth rod?
$\textbf{(A) }16\qquad\textbf{(B) }17\qquad\textbf{(C) }18\qquad\textbf{(D) }19\qquad\textbf{(E) }20$
1974 Bundeswettbewerb Mathematik, 3
Let $M$ be a set with $n$ elements. How many pairs $(A, B)$ of subsets of $M$ are there such that $A$ is a subset of $B?$
1982 Dutch Mathematical Olympiad, 3
Five marbles are distributed at a random among seven urns. What is the expected number of urns with exactly one marble?
2007 Purple Comet Problems, 12
If you alphabetize all of the distinguishable rearrangements of the letters in the word [b]PURPLE[/b], find the number $n$ such that the word [b]PURPLE [/b]is the $n$th item in the list.
2021 Bangladeshi National Mathematical Olympiad, 1
How many ordered pairs of integers $(m,n)$ are there such that $m$ and $n$ are the legs of a right triangle with an area equal to a prime number not exceeding $80$?
2017 AMC 10, 17
Call a positive integer [i]monotonous[/i] if it is a one-digit number or its digits, when read from left to right, form either a strictly increasing or a strictly decreasing sequence. For example, 3, 23578, and 987620 are monotonous, but 88, 7434, and 23557 are not. How many monotonous positive integers are there?
$\textbf{(A)} \text{ 1024} \qquad \textbf{(B)} \text{ 1524} \qquad \textbf{(C)} \text{ 1533} \qquad \textbf{(D)} \text{ 1536} \qquad \textbf{(E)} \text{ 2048}$
2018 PUMaC Combinatorics B, 3
In an election between $\text{A}$ and $\text{B}$, during the counting of the votes, neither candidate was more than $2$ votes ahead, and the vote ended in a tie, $6$ votes to $6$ votes. Two votes for the same candidate are indistinguishable. In how many orders could the votes have been counted? One possibility is $\text{AABBABBABABA}$.
2019 AMC 10, 17
A child builds towers using identically shaped cubes of different color. How many different towers with a height $8$ cubes can the child build with $2$ red cubes, $3$ blue cubes, and $4$ green cubes? (One cube will be left out.)
$\textbf{(A) } 24 \qquad\textbf{(B) } 288 \qquad\textbf{(C) } 312 \qquad\textbf{(D) } 1,260 \qquad\textbf{(E) } 40,320$
1989 IMO, 6
A permutation $ \{x_1, x_2, \ldots, x_{2n}\}$ of the set $ \{1,2, \ldots, 2n\}$ where $ n$ is a positive integer, is said to have property $ T$ if $ |x_i \minus{} x_{i \plus{} 1}| \equal{} n$ for at least one $ i$ in $ \{1,2, \ldots, 2n \minus{} 1\}.$ Show that, for each $ n$, there are more permutations with property $ T$ than without.
1967 IMO Longlists, 11
Let $n$ be a positive integer. Find the maximal number of non-congruent triangles whose sides lengths are integers $\leq n.$
1966 IMO Longlists, 14
What is the maximal number of regions a circle can be divided in by segments joining $n$ points on the boundary of the circle ?
[i]Posted already on the board I think...[/i]
2024 New Zealand MO, 1
At each vertex of a regular $14$-gon, lies a coin. Initially $7$ coins are heads, and $7$ coins are tails. Determine the minimum number $t$ such that it’s always possible to turn over at most $t$ of the coins so that in the resulting $14$-gon, no two adjacent coins are both heads and no two adjacent coins are both tails.
1980 IMO, 4
Prove that $\sum \frac{1}{i_1i_2 \ldots i_k} = n$ is taken over all non-empty subsets $\left\{i_1,i_2, \ldots, i_k\right\}$ of $\left\{1,2,\ldots,n\right\}$. (The $k$ is not fixed, so we are summing over all the $2^n-1$ possible nonempty subsets.)
2024 AMC 10, 20
Three different pairs of shoes are placed in a row so that no left shoe is next to a right shoe from a different pair. In how many ways can these six shoes be lined up?
$
\textbf{(A) }60\qquad
\textbf{(B) }72\qquad
\textbf{(C) }90\qquad
\textbf{(D) }108\qquad
\textbf{(E) }120\qquad
$
2023 Indonesia MO, 6
Determine the number of permutations $a_1, a_2, \dots, a_n$ of $1, 2, \dots, n$ such that for every positive integer $k$ with $1 \le k \le n$, there exists an integer $r$ with $0 \le r \le n - k$ which satisfies
\[ 1 + 2 + \dots + k = a_{r+1} + a_{r+2} + \dots + a_{r+k}. \]
2017 AMC 12/AHSME, 13
In the figure below, $3$ of the $6$ disks are to be painted blue, $2$ are to be painted red, and $1$ is to be painted green. Two paintings that can be obtained from one another by a rotation or a reflection of the entire figure are considered the same. How many different paintings are possible?
[asy]
size(100);
pair A, B, C, D, E, F;
A = (0,0);
B = (1,0);
C = (2,0);
D = rotate(60, A)*B;
E = B + D;
F = rotate(60, A)*C;
draw(Circle(A, 0.5));
draw(Circle(B, 0.5));
draw(Circle(C, 0.5));
draw(Circle(D, 0.5));
draw(Circle(E, 0.5));
draw(Circle(F, 0.5));
[/asy]
$\textbf{(A) } 6 \qquad \textbf{(B) } 8 \qquad \textbf{(C) } 9 \qquad \textbf{(D) } 12 \qquad \textbf{(E) } 15$
2013 India IMO Training Camp, 1
Let $n \ge 2$ be an integer. There are $n$ beads numbered $1, 2, \ldots, n$. Two necklaces made out of some of these beads are considered the same if we can get one by rotating the other (with no flipping allowed). For example, with $n \ge 5$, the necklace with four beads $1, 5, 3, 2$ in the clockwise order is same as the one with $5, 3, 2, 1$ in the clockwise order, but is different from the one with $1, 2, 3, 5$ in the clockwise order.
We denote by $D_0(n)$ (respectively $D_1(n)$) the number of ways in which we can use all the beads to make an even number (resp. an odd number) of necklaces each of length at least $3$. Prove that $n - 1$ divides $D_1(n) - D_0(n)$.
2018 Junior Regional Olympiad - FBH, 3
In some primary school there were $94$ students in $7$th grade. Some students are involved in extracurricular activities: spanish and german language and sports. Spanish language studies $40$ students outside school program, german $27$ students and $60$ students do sports. Out of the students doing sports, $24$ of them also goes to spanish language. $10$ students who study spanish also study german. $12$ students who study german also do sports. Only $4$ students go to all three activities. How many of them does only one of the activities, and how much of them do not go to any activity?
2022 Bulgaria JBMO TST, 3
For a positive integer $n$ let $t_n$ be the number of unordered triples of non-empty and pairwise disjoint subsets of a given set with $n$ elements. For example, $t_3 = 1$. Find a closed form formula for $t_n$ and determine the last digit of $t_{2022}$.
(I also give here that $t_4 = 10$, for a reader to check his/her understanding of the problem statement.)
2020 AMC 12/AHSME, 5
Teams $A$ and $B$ are playing in a basketball league where each game results in a win for one team and a loss for the other team. Team $A$ has won $\tfrac{2}{3}$ of its games and team $B$ has won $\tfrac{5}{8}$ of its games. Also, team $B$ has won $7$ more games and lost $7$ more games than team $A.$ How many games has team $A$ played?
$\textbf{(A) } 21 \qquad \textbf{(B) } 27 \qquad \textbf{(C) } 42 \qquad \textbf{(D) } 48 \qquad \textbf{(E) } 63$