Found problems: 405
2016 AMC 10, 11
What is the area of the shaded region of the given $8 \times 5$ rectangle?
[asy]
size(6cm);
defaultpen(fontsize(9pt));
draw((0,0)--(8,0)--(8,5)--(0,5)--cycle);
filldraw((7,0)--(8,0)--(8,1)--(0,4)--(0,5)--(1,5)--cycle,gray(0.8));
label("$1$",(1/2,5),dir(90));
label("$7$",(9/2,5),dir(90));
label("$1$",(8,1/2),dir(0));
label("$4$",(8,3),dir(0));
label("$1$",(15/2,0),dir(270));
label("$7$",(7/2,0),dir(270));
label("$1$",(0,9/2),dir(180));
label("$4$",(0,2),dir(180));
[/asy]
$\textbf{(A)}\ 4\dfrac{3}{5} \qquad \textbf{(B)}\ 5\qquad \textbf{(C)}\ 5\dfrac{1}{4} \qquad \textbf{(D)}\ 6\dfrac{1}{2} \qquad \textbf{(E)}\ 8$
2004 Germany Team Selection Test, 3
Let $ABC$ be an isosceles triangle with $AC=BC$, whose incentre is $I$. Let $P$ be a point on the circumcircle of the triangle $AIB$ lying inside the triangle $ABC$. The lines through $P$ parallel to $CA$ and $CB$ meet $AB$ at $D$ and $E$, respectively. The line through $P$ parallel to $AB$ meets $CA$ and $CB$ at $F$ and $G$, respectively. Prove that the lines $DF$ and $EG$ intersect on the circumcircle of the triangle $ABC$.
[i]Proposed by Hojoo Lee, Korea[/i]
2021 ISI Entrance Examination, 6
If a given equilateral triangle $\Delta$ of side length $a$ lies in the union of five equilateral triangles of side length $b$, show that there exist four equilateral triangles of side length $b$ whose union contains $\Delta$.
2007 France Team Selection Test, 3
A point $D$ is chosen on the side $AC$ of a triangle $ABC$ with $\angle C < \angle A < 90^\circ$ in such a way that $BD=BA$. The incircle of $ABC$ is tangent to $AB$ and $AC$ at points $K$ and $L$, respectively. Let $J$ be the incenter of triangle $BCD$. Prove that the line $KL$ intersects the line segment $AJ$ at its midpoint.
1971 Czech and Slovak Olympiad III A, 5
Let $ABC$ be a given triangle. Find the locus $\mathbf M$ of all vertices $Z$ such that triangle $XYZ$ is equilateral where $X$ is any point of segment $AB$ and $Y\neq X$ lies on ray $AC.$
2012 Belarus Team Selection Test, 3
Prove that for every positive integer $n,$ the set $\{2,3,4,\ldots,3n+1\}$ can be partitioned into $n$ triples in such a way that the numbers from each triple are the lengths of the sides of some obtuse triangle.
[i]Proposed by Canada[/i]
1966 IMO Shortlist, 19
Construct a triangle given the radii of the excircles.
2013 Ukraine Team Selection Test, 8
Let $ABC$ be a triangle with $AB \neq AC$ and circumcenter $O$. The bisector of $\angle BAC$ intersects $BC$ at $D$. Let $E$ be the reflection of $D$ with respect to the midpoint of $BC$. The lines through $D$ and $E$ perpendicular to $BC$ intersect the lines $AO$ and $AD$ at $X$ and $Y$ respectively. Prove that the quadrilateral $BXCY$ is cyclic.
2017 Greece National Olympiad, 1
An acute triangle $ABC$ with $AB<AC<BC$ is inscribed in a circle $c(O,R)$. The circle $c_1(A,AC)$ intersects the circle $c$ at point $D$ and intersects $CB$ at $E$. If the line $AE$ intersects $c$ at $F$ and $G$ lies in $BC$ such that $EB=BG$, prove that $F,E,D,G$ are concyclic.
2005 ISI B.Stat Entrance Exam, 5
Consider an acute angled triangle $PQR$ such that $C,I$ and $O$ are the circumcentre, incentre and orthocentre respectively. Suppose $\angle QCR, \angle QIR$ and $\angle QOR$, measured in degrees, are $\alpha, \beta$ and $\gamma$ respectively. Show that \[\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}>\frac{1}{45}\]
1974 IMO, 2
Let $ABC$ be a triangle. Prove that there exists a point $D$ on the side $AB$ of the triangle $ABC$, such that $CD$ is the geometric mean of $AD$ and $DB$, iff the triangle $ABC$ satisfies the inequality $\sin A\sin B\le\sin^2\frac{C}{2}$.
[hide="Comment"][i]Alternative formulation, from IMO ShortList 1974, Finland 2:[/i] We consider a triangle $ABC$. Prove that: $\sin(A) \sin(B) \leq \sin^2 \left( \frac{C}{2} \right)$ is a necessary and sufficient condition for the existence of a point $D$ on the segment $AB$ so that $CD$ is the geometrical mean of $AD$ and $BD$.[/hide]
2000 Romania Team Selection Test, 2
Let ABC be a triangle and $M$ be an interior point. Prove that
\[ \min\{MA,MB,MC\}+MA+MB+MC<AB+AC+BC.\]
2004 India IMO Training Camp, 1
Let $ABC$ be a triangle and let $P$ be a point in its interior. Denote by $D$, $E$, $F$ the feet of the perpendiculars from $P$ to the lines $BC$, $CA$, $AB$, respectively. Suppose that \[AP^2 + PD^2 = BP^2 + PE^2 = CP^2 + PF^2.\] Denote by $I_A$, $I_B$, $I_C$ the excenters of the triangle $ABC$. Prove that $P$ is the circumcenter of the triangle $I_AI_BI_C$.
[i]Proposed by C.R. Pranesachar, India [/i]
2010 Belarus Team Selection Test, 4.2
Let $ABC$ be a triangle. The incircle of $ABC$ touches the sides $AB$ and $AC$ at the points $Z$ and $Y$, respectively. Let $G$ be the point where the lines $BY$ and $CZ$ meet, and let $R$ and $S$ be points such that the two quadrilaterals $BCYR$ and $BCSZ$ are parallelogram.
Prove that $GR=GS$.
[i]Proposed by Hossein Karke Abadi, Iran[/i]
2012 Polish MO Finals, 5
Point $O$ is a center of circumcircle of acute triangle $ABC$, bisector of angle $BAC$ cuts side $BC$ in point $D$. Let $M$ be a point such that, $MC \perp BC$ and $MA \perp AD$. Lines $BM$ and $OA$ intersect in point $P$. Show that circle of center in point $P$ passing through a point $A$ is tangent to line $BC$.
1982 IMO Shortlist, 9
Let $ABC$ be a triangle, and let $P$ be a point inside it such that $\angle PAC = \angle PBC$. The perpendiculars from $P$ to $BC$ and $CA$ meet these lines at $L$ and $M$, respectively, and $D$ is the midpoint of $AB$. Prove that $DL = DM.$
2007 Sharygin Geometry Olympiad, 3
Segments connecting an inner point of a convex non-equilateral n-gon to its vertices divide the n-gon into n equal triangles. What is the least possible n?
2019 Jozsef Wildt International Math Competition, W. 23
If $b$, $c$ are the legs, and $a$ is the hypotenuse of a right triangle, prove that$$\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq 5+3\sqrt{2}$$
1980 Bundeswettbewerb Mathematik, 3
In a triangle $ABC$, points $P, Q$ and $ R$ distinct from the vertices of the triangle are chosen on sides $AB, BC$ and $CA$, respectively. The circumcircles of the triangles $APR$, $BPQ$, and $CQR$ are drawn. Prove that the centers of these circles are the vertices of a triangle similar to triangle $ABC$.
1978 Bundeswettbewerb Mathematik, 4
In a triangle $ABC$, the points $A_1, B_1, C_1$ are symmetric to $A, B,C$ with respect to $B,C, A$, respectively. Given the points $A_1, B_1,C_1$ reconstruct the triangle $ABC$.
1981 Czech and Slovak Olympiad III A, 3
Let $ABCD$ be a unit square. Consider an equilateral triangle $XYZ$ with $X,Y$ as (inner or boundary) points of the square. Determine the locus $M$ of vertices $Z$ of all these triangles $XYZ$ and compute the area of $M.$
2012 IMO Shortlist, G4
Let $ABC$ be a triangle with $AB \neq AC$ and circumcenter $O$. The bisector of $\angle BAC$ intersects $BC$ at $D$. Let $E$ be the reflection of $D$ with respect to the midpoint of $BC$. The lines through $D$ and $E$ perpendicular to $BC$ intersect the lines $AO$ and $AD$ at $X$ and $Y$ respectively. Prove that the quadrilateral $BXCY$ is cyclic.
1997 Spain Mathematical Olympiad, 3
For each parabola $y = x^2+ px+q$ intersecting the coordinate axes in three distinct points, consider the circle passing through these points. Prove that all these circles pass through a single point, and find this point.
2002 India IMO Training Camp, 4
Let $O$ be the circumcenter and $H$ the orthocenter of an acute triangle $ABC$. Show that there exist points $D$, $E$, and $F$ on sides $BC$, $CA$, and $AB$ respectively such that \[ OD + DH = OE + EH = OF + FH\] and the lines $AD$, $BE$, and $CF$ are concurrent.
1996 IMO Shortlist, 4
Determine whether or nor there exist two disjoint infinite sets $ A$ and $ B$ of points in the plane satisfying the following conditions:
a.) No three points in $ A \cup B$ are collinear, and the distance between any two points in $ A \cup B$ is at least 1.
b.) There is a point of $ A$ in any triangle whose vertices are in $ B,$ and there is a point of $ B$ in any triangle whose vertices are in $ A.$