Found problems: 401
2020 AMC 10, 5
How many distinguishable arrangements are there of $1$ brown tile, $1$ purple tile, $2$ green tiles, and $3$ yellow tiles in a row from left to right? (Tiles of the same color are indistinguishable)
$\textbf{(A)}\ 210\qquad\textbf{(B)}\ 420\qquad\textbf{(C)}\ 630\qquad\textbf{(D)}\ 840\qquad\textbf{(E)}\ 1050$
2014 Harvard-MIT Mathematics Tournament, 7
Six distinguishable players are participating in a tennis tournament. Each player plays one match of tennis against every other player. The outcome of each tennis match is a win for one player and a loss for the other players; there are no ties. Suppose that whenever $A$ and $B$ are players in the tournament for which $A$ won (strictly) more matches than $B$ over the course of the tournament, it is also the case that $A$ won the match against $B$ during the tournament. In how many ways could the tournament have gone?
2012 AMC 8, 10
How many 4-digit numbers greater than 1000 are there that use the four digits of 2012?
$\textbf{(A)}\hspace{.05in}6 \qquad \textbf{(B)}\hspace{.05in}7 \qquad \textbf{(C)}\hspace{.05in}8 \qquad \textbf{(D)}\hspace{.05in}9 \qquad \textbf{(E)}\hspace{.05in}12 $
1982 IMO Shortlist, 10
A box contains $p$ white balls and $q$ black balls. Beside the box there is a pile of black balls. Two balls are taken out of the box. If they have the same color, a black ball from the pile is put into the box. If they have different colors, the white ball is put back into the box. This procedure is repeated until the last two balls are removed from the box and one last ball is put in. What is the probability that this last ball is white?
2008 Moldova Team Selection Test, 4
Find the number of even permutations of $ \{1,2,\ldots,n\}$ with no fixed points.
2021 Bangladeshi National Mathematical Olympiad, 10
A positive integer $n$ is called [i]nice[/i] if it has at least $3$ proper divisors and it is equal to the sum of its three largest proper divisors. For example, $6$ is [i]nice[/i] because its largest three proper divisors are $3,2,1$ and $6=3+2+1$. Find the number of [i]nice[/i] integers not greater than $3000$.
2012 AMC 12/AHSME, 11
Alex, Mel, and Chelsea play a game that has $6$ rounds. In each round there is a single winner, and the outcomes of the rounds are independent. For each round the probability that Alex wins is $\frac{1}{2}$, and Mel is twice as likely to win as Chelsea. What is the probability that Alex wins three rounds, Mel wins two rounds, and Chelsea wins one round?
$ \textbf{(A)}\ \frac{5}{72}\qquad\textbf{(B)}\ \frac{5}{36}\qquad\textbf{(C)}\ \frac{1}{6}\qquad\textbf{(D)}\ \frac{1}{3}\qquad\textbf{(E)}\ 1 $
1992 IMO Longlists, 45
Let $n$ be a positive integer. Prove that the number of ways to express $n$ as a sum of distinct positive integers (up to order) and the number of ways to express $n$ as a sum of odd positive integers (up to order) are the same.
1967 IMO Shortlist, 1
Given $m+n$ numbers: $a_i,$ $i = 1,2, \ldots, m,$ $b_j$, $j = 1,2, \ldots, n,$ determine the number of pairs $(a_i,b_j)$ for which $|i-j| \geq k,$ where $k$ is a non-negative integer.
2003 AMC 12-AHSME, 20
How many $ 15$-letter arrangements of $ 5$ A's, $ 5$ B's, and $ 5$ C's have no A's in the first $ 5$ letters, no B's in the next $ 5$ letters, and no C's in the last $ 5$ letters?
$ \textbf{(A)}\ \sum_{k\equal{}0}^5\binom{5}{k}^3 \qquad
\textbf{(B)}\ 3^5\cdot 2^5 \qquad
\textbf{(C)}\ 2^{15} \qquad
\textbf{(D)}\ \frac{15!}{(5!)^3} \qquad
\textbf{(E)}\ 3^{15}$
2015 Moldova Team Selection Test, 4
Consider a positive integer $n$ and $A = \{ 1,2,...,n \}$. Call a subset $X \subseteq A$ [i][b]perfect[/b][/i] if $|X| \in X$. Call a perfect subset $X$ [i][b]minimal[/b][/i] if it doesn't contain another perfect subset. Find the number of minimal subsets of $A$.
2022 AMC 10, 19
Each square in a $5 \times 5$ grid is either filled or empty, and has up to eight adjacent neighboring squares, where neighboring squares share either a side or a corner. The grid is transformed by the following rules:
[list]
[*] Any filled square with two or three filled neighbors remains filled.
[*] Any empty square with exactly three filled neighbors becomes a filled square.
[*] All other squares remain empty or become empty.
[/list]
A sample transformation is shown in the figure below.
[asy]
import geometry;
unitsize(0.6cm);
void ds(pair x) {
filldraw(x -- (1,0) + x -- (1,1) + x -- (0,1)+x -- cycle,gray+opacity(0.5),invisible);
}
ds((1,1));
ds((2,1));
ds((3,1));
ds((1,3));
for (int i = 0; i <= 5; ++i) {
draw((0,i)--(5,i));
draw((i,0)--(i,5));
}
label("Initial", (2.5,-1));
draw((6,2.5)--(8,2.5),Arrow);
ds((10,2));
ds((11,1));
ds((11,0));
for (int i = 0; i <= 5; ++i) {
draw((9,i)--(14,i));
draw((i+9,0)--(i+9,5));
}
label("Transformed", (11.5,-1));
[/asy]
Suppose the $5 \times 5$ grid has a border of empty squares surrounding a $3 \times 3$ subgrid. How many initial configurations will lead to a transformed grid consisting of a single filled square in the center after a single transformation? (Rotations and reflections of the same configuration are considered different.)
[asy]
import geometry;
unitsize(0.6cm);
void ds(pair x) {
filldraw(x -- (1,0) + x -- (1,1) + x -- (0,1)+x -- cycle,gray+opacity(0.5),invisible);
}
for (int i = 1; i < 4; ++ i) {
for (int j = 1; j < 4; ++j) {
label("?",(i + 0.5, j + 0.5));
}
}
for (int i = 0; i <= 5; ++i) {
draw((0,i)--(5,i));
draw((i,0)--(i,5));
}
label("Initial", (2.5,-1));
draw((6,2.5)--(8,2.5),Arrow);
ds((11,2));
for (int i = 0; i <= 5; ++i) {
draw((9,i)--(14,i));
draw((i+9,0)--(i+9,5));
}
label("Transformed", (11.5,-1));
[/asy]
$$\textbf{(A) 14}~\textbf{(B) 18}~\textbf{(C) 22}~\textbf{(D) 26}~\textbf{(E) 30}$$
1984 IMO Longlists, 22
In a permutation $(x_1, x_2, \dots , x_n)$ of the set $1, 2, \dots , n$ we call a pair $(x_i, x_j )$ discordant if $i < j$ and $x_i > x_j$. Let $d(n, k)$ be the number of such permutations with exactly $k$ discordant pairs. Find $d(n, 2)$ and $d(n, 3).$
1989 IMO Longlists, 71
A permutation $ \{x_1, x_2, \ldots, x_{2n}\}$ of the set $ \{1,2, \ldots, 2n\}$ where $ n$ is a positive integer, is said to have property $ T$ if $ |x_i \minus{} x_{i \plus{} 1}| \equal{} n$ for at least one $ i$ in $ \{1,2, \ldots, 2n \minus{} 1\}.$ Show that, for each $ n$, there are more permutations with property $ T$ than without.
2020-21 IOQM India, 27
Q.A bug travels in the co-ordinate plane moving along only the lines that are parallel to the $X$ and $Y$ axes.Let $A=(-3, 2)$ and $B = (3, -2)$. Consider all possible paths of the bug from $A$ to $B$.How many lattice points lie on at least one of these paths.
My answer ($87$)
1987 IMO Shortlist, 16
Let $p_n(k)$ be the number of permutations of the set $\{1,2,3,\ldots,n\}$ which have exactly $k$ fixed points. Prove that $\sum_{k=0}^nk p_n(k)=n!$.[i](IMO Problem 1)[/i]
[b][i]Original formulation [/i][/b]
Let $S$ be a set of $n$ elements. We denote the number of all permutations of $S$ that have exactly $k$ fixed points by $p_n(k).$ Prove:
(a) $\sum_{k=0}^{n} kp_n(k)=n! \ ;$
(b) $\sum_{k=0}^{n} (k-1)^2 p_n(k) =n! $
[i]Proposed by Germany, FR[/i]
ICMC 5, 1
Let $T_n$ be the number of non-congruent triangles with positive area and integer side lengths summing to $n$. Prove that $T_{2022}=T_{2019}$.
[i]Proposed by Constantinos Papachristoforou[/i]
2006 Harvard-MIT Mathematics Tournament, 5
Fifteen freshmen are sitting in a circle around a table, but the course assistant (who remains standing) has made only six copies of today’s handout. No freshman should get more than one handout, and any freshman who does not get one should be able to read a neighbor’s. If the freshmen are distinguishable but the handouts are not, how many ways are there to distribute the six handouts subject to the above conditions?
1997 IMO, 6
For each positive integer $ n$, let $ f(n)$ denote the number of ways of representing $ n$ as a sum of powers of 2 with nonnegative integer exponents. Representations which differ only in the ordering of their summands are considered to be the same. For instance, $ f(4) \equal{} 4$, because the number 4 can be represented in the following four ways: 4; 2+2; 2+1+1; 1+1+1+1.
Prove that, for any integer $ n \geq 3$ we have $ 2^{\frac {n^2}{4}} < f(2^n) < 2^{\frac {n^2}2}$.
1997 IMO Shortlist, 13
In town $ A,$ there are $ n$ girls and $ n$ boys, and each girl knows each boy. In town $ B,$ there are $ n$ girls $ g_1, g_2, \ldots, g_n$ and $ 2n \minus{} 1$ boys $ b_1, b_2, \ldots, b_{2n\minus{}1}.$ The girl $ g_i,$ $ i \equal{} 1, 2, \ldots, n,$ knows the boys $ b_1, b_2, \ldots, b_{2i\minus{}1},$ and no others. For all $ r \equal{} 1, 2, \ldots, n,$ denote by $ A(r),B(r)$ the number of different ways in which $ r$ girls from town $ A,$ respectively town $ B,$ can dance with $ r$ boys from their own town, forming $ r$ pairs, each girl with a boy she knows. Prove that $ A(r) \equal{} B(r)$ for each $ r \equal{} 1, 2, \ldots, n.$
2010 Today's Calculation Of Integral, 602
Prove the following inequality.
\[\frac{e-1}{n+1}\leqq\int^e_1(\log x)^n dx\leqq\frac{(n+1)e+1}{(n+1)(n+2)}\ (n=1,2,\cdot\cdot\cdot) \]
1994 Kyoto University entrance exam/Science
2017 AMC 12/AHSME, 5
At a gathering of $30$ people, there are $20$ people who all know each other and $10$ people who know no one. People who know each other hug, and people who do not know each other shake hands. How many handshakes occur?
$\textbf{(A)}\ 240\qquad\textbf{(B)}\ 245\qquad\textbf{(C)}\ 290\qquad\textbf{(D)}\ 480\qquad\textbf{(E)}\ 490$
1986 IMO Shortlist, 10
Three persons $A,B,C$, are playing the following game:
A $k$-element subset of the set $\{1, . . . , 1986\}$ is randomly chosen, with an equal probability of each choice, where $k$ is a fixed positive integer less than or equal to $1986$. The winner is $A,B$ or $C$, respectively, if the sum of the chosen numbers leaves a remainder of $0, 1$, or $2$ when divided by $3$.
For what values of $k$ is this game a fair one? (A game is fair if the three outcomes are equally probable.)
2022 AMC 12/AHSME, 7
A rectangle is partitioned into 5 regions as shown. Each region is to be painted a solid color - red, orange, yellow, blue, or green - so that regions that touch are painted different colors, and colors can be used more than once. How many different colorings are possible?
[asy]
size(5.5cm);
draw((0,0)--(0,2)--(2,2)--(2,0)--cycle);
draw((2,0)--(8,0)--(8,2)--(2,2)--cycle);
draw((8,0)--(12,0)--(12,2)--(8,2)--cycle);
draw((0,2)--(6,2)--(6,4)--(0,4)--cycle);
draw((6,2)--(12,2)--(12,4)--(6,4)--cycle);
[/asy]
$\textbf{(A) }120\qquad\textbf{(B) }270\qquad\textbf{(C) }360\qquad\textbf{(D) }540\qquad\textbf{(E) }720$
2022 Tuymaada Olympiad, 8
Eight poles stand along the road. A sparrow starts at the first pole and once in a minute flies to a neighboring pole. Let $a(n)$ be the number of ways to reach the last pole in $2n + 1$ flights (we assume $a(m) = 0$ for $m < 3$). Prove that for all $n \ge 4$ $$a(n) - 7a(n-1)+ 15a(n-2) - 10a(n-3) +a(n-4)=0.$$
[i](T. Amdeberhan, F. Petrov )[/i]