This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2010 Contests, 2

There are $n$ points in the page such that no three of them are collinear.Prove that number of triangles that vertices of them are chosen from these $n$ points and area of them is 1,is not greater than $\frac23(n^2-n)$.

2010 Iran MO (2nd Round), 2

There are $n$ points in the page such that no three of them are collinear.Prove that number of triangles that vertices of them are chosen from these $n$ points and area of them is 1,is not greater than $\frac23(n^2-n)$.