This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 36

1977 Spain Mathematical Olympiad, 1

Given the determinant of order $n$ $$\begin{vmatrix} 8 & 3 & 3 & \dots & 3 \\ 3 & 8 & 3 & \dots & 3 \\ 3 & 3 & 8 & \dots & 3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 3 & 3 & 3 & \dots & 8 \end{vmatrix}$$ Calculate its value and determine for which values of $n$ this value is a multiple of $10$.

2010 Gheorghe Vranceanu, 2

Let be a natural number $ n, $ a number $ t\in (0,1) $ and $ n+1 $ numbers $ a_0\ge a_1\ge a_2\ge\cdots\ge a_n\ge 0. $ Prove the following matrix inequality: $$ \begin{vmatrix}\frac{(1+t\sqrt{-1})^2}{1+t^2} & -1 & 0& 0 & \cdots & 0 & 0 \\ 0 & \frac{(1+t\sqrt{-1})^2}{1+t^2} & -1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \frac{(1+t\sqrt{-1})^2}{1+t^2} & -1 \\ a_0 & a_1 & a_2 & a_3 & \cdots & a_{n-1} & a_n \end{vmatrix}^2\le a_0^2\left( 1+\frac{1}{t^2} \right) $$

2020 Thailand TST, 3

Let $x_1, x_2, \dots, x_n$ be different real numbers. Prove that \[\sum_{1 \leqslant i \leqslant n} \prod_{j \neq i} \frac{1-x_{i} x_{j}}{x_{i}-x_{j}}=\left\{\begin{array}{ll} 0, & \text { if } n \text { is even; } \\ 1, & \text { if } n \text { is odd. } \end{array}\right.\]

2014 SEEMOUS, Problem 1

Let $n$ be a nonzero natural number and $f:\mathbb R\to\mathbb R\setminus\{0\}$ be a function such that $f(2014)=1-f(2013)$. Let $x_1,x_2,x_3,\ldots,x_n$ be real numbers not equal to each other. If $$\begin{vmatrix}1+f(x_1)&f(x_2)&f(x_3)&\cdots&f(x_n)\\f(x_1)&1+f(x_2)&f(x_3)&\cdots&f(x_n)\\f(x_1)&f(x_2)&1+f(x_3)&\cdots&f(x_n)\\\vdots&\vdots&\vdots&\ddots&\vdots\\f(x_1)&f(x_2)&f(x_3)&\cdots&1+f(x_n)\end{vmatrix}=0,$$prove that $f$ is not continuous.

1986 Traian Lălescu, 2.1

Show that for any natural numbers $ m,n\ge 3, $ the equation $ \Delta_n (x)=0 $ has exactly two distinct solutions, where $$ \Delta_n (x)=\begin{vmatrix}1 & 1-m & 1-m & \cdots & 1-m & 1-m & -m \\ -1 & \binom{m}{x} & 0 & \cdots & 0 & 0 & 0 \\ 0 & -1 & \binom{m}{x} & \cdots & 0 & 0 & 0 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & -1 & \binom{m}{x} & 0 \\ 0 & 0 & 0 & \cdots & 0 & -1 & \binom{m}{x}\end{vmatrix} . $$

2016 Korea USCM, 6

$A$ and $B$ are $2\times 2$ real valued matrices satisfying $$\det A = \det B = 1,\quad \text{tr}(A)>2,\quad \text{tr}(B)>2,\quad \text{tr}(ABA^{-1}B^{-1}) = 2$$ Prove that $A$ and $B$ have a common eigenvector.

2019 Jozsef Wildt International Math Competition, W. 13

Let $a$, $b$ and $c$ be complex numbers such that $abc = 1$. Find the value of the cubic root of \begin{tabular}{|ccc|} $b + n^3c$ & $n(c - b)$ & $n^2(b - c)$\\ $n^2(c - a)$ & $c + n^3a$ & $n(a - c)$\\ $n(b - a)$ & $n^2(a - b)$ & $a + n^3b$ \end{tabular}

2018 Korea USCM, 4

$n\geq 2$ is a given integer. For two permuations $(\alpha_1,\cdots,\alpha_n)$ and $(\beta_1,\cdots,\beta_n)$ of $1,\cdots,n$, consider $n\times n$ matrix $A= \left(a_{ij} \right)_{1\leq i,j\leq n}$ defined by $a_{ij} = (1+\alpha_i \beta_j )^{n-1}$. Find every possible value of $\det(A)$.

1996 Romania National Olympiad, 3

Let $A, B \in M_2(\mathbb{R})$ such as $det(AB+BA)\leq 0$. Prove that $$det(A^2+B^2)\geq 0$$

ICMC 5, 3

Let $\mathcal M$ be the set of $n\times n$ matrices with integer entries. Find all $A\in\mathcal M$ such that $\det(A+B)+\det(B)$ is even for all $B\in\mathcal M$. [i]Proposed by Ethan Tan[/i]

2019 District Olympiad, 3

Let $n$ be an odd natural number and $A,B \in \mathcal{M}_n(\mathbb{C})$ be two matrices such that $(A-B)^2=O_n.$ Prove that $\det(AB-BA)=0.$

2019 District Olympiad, 2

Let $n \in \mathbb{N},n \ge 2,$ and $A,B \in \mathcal{M}_n(\mathbb{R}).$ Prove that there exists a complex number $z,$ such that $|z|=1$ and $$\Re \left( {\det(A+zB)} \right) \ge \det(A)+\det(B),$$ where $\Re(w)$ is the real part of the complex number $w.$

1969 Putnam, A2

Tags: determinant
Let $D_n$ be the determinant of order $n$ of which the element in the $i$-th row and the $j$-th column is $|i-j|.$ Show that $D_n$ is equal to $$(-1)^{n-1}(n-1)2^{n-2}.$$

2020 Taiwan TST Round 3, 1

Let $x_1, x_2, \dots, x_n$ be different real numbers. Prove that \[\sum_{1 \leqslant i \leqslant n} \prod_{j \neq i} \frac{1-x_{i} x_{j}}{x_{i}-x_{j}}=\left\{\begin{array}{ll} 0, & \text { if } n \text { is even; } \\ 1, & \text { if } n \text { is odd. } \end{array}\right.\]

2017 Korea USCM, 1

$n(\geq 2)$ is a given integer and $T$ is set of all $n\times n$ matrices whose entries are elements of the set $S=\{1,\cdots,2017\}$. Evaluate the following value. \[\sum_{A\in T} \text{det}(A)\]

2024 CIIM, 2

Let $n$ be a positive integer, and let $M_n$ be the set of invertible matrices with integer entries and size $n \times n$. (a) Find the largest possible value of $n$ such that there exists a symmetric matrix $A \in M_n$ satisfying \[ \det(A^{20} + A^{24}) < 2024. \] (b) Prove that for every $n$, there exists a matrix $B \in M_n$ such that \[ \det(B^{20} + B^{24}) < 2024. \]

1992 Putnam, B5

Let $D_n$ denote the value of the $(n -1) \times (n - 1)$ determinant $$ \begin{pmatrix} 3 & 1 &1 & \ldots & 1\\ 1 & 4 &1 & \ldots & 1\\ 1 & 1 & 5 & \ldots & 1\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & 1 & 1 & \ldots & n+1 \end{pmatrix}.$$ Is the set $\left\{ \frac{D_n }{n!} \, | \, n \geq 2\right\}$ bounded?

2018 Putnam, A2

Tags: determinant
Let $S_1, S_2, \dots, S_{2^n - 1}$ be the nonempty subsets of $\{1, 2, \dots, n\}$ in some order, and let $M$ be the $(2^n - 1) \times (2^n - 1)$ matrix whose $(i, j)$ entry is \[m_{ij} = \left\{ \begin{array}{cl} 0 & \text{if $S_i \cap S_j = \emptyset$}, \\ 1 & \text{otherwise}. \end{array} \right.\] Calculate the determinant of $M$.

2020 Brazil Team Selection Test, 3

Let $x_1, x_2, \dots, x_n$ be different real numbers. Prove that \[\sum_{1 \leqslant i \leqslant n} \prod_{j \neq i} \frac{1-x_{i} x_{j}}{x_{i}-x_{j}}=\left\{\begin{array}{ll} 0, & \text { if } n \text { is even; } \\ 1, & \text { if } n \text { is odd. } \end{array}\right.\]

2019 IMO Shortlist, A5

Let $x_1, x_2, \dots, x_n$ be different real numbers. Prove that \[\sum_{1 \leqslant i \leqslant n} \prod_{j \neq i} \frac{1-x_{i} x_{j}}{x_{i}-x_{j}}=\left\{\begin{array}{ll} 0, & \text { if } n \text { is even; } \\ 1, & \text { if } n \text { is odd. } \end{array}\right.\]

1987 Greece National Olympiad, 2

Let $A=(\alpha_{ij})$ be a $m\,x\,n$ matric and $B=(\beta_{kl})$ be a $n\,x\, m$ matric with $m>n$ . Prove that $D(A\cdot B)=0$.

1985 Traian Lălescu, 1.3

Let be two matrices $ A,B\in M_2\left(\mathbb{R}\right) $ and two natural numbers $ m,n. $ Prove that: $$ \det\left( (AB)^m-(BA)^m\right)\cdot\det\left( (AB)^n-(BA)^n\right)\ge 0. $$

2024 SG Originals, Q4

In a new edition of QoTD duels, $n \ge 2$ ranked contestants (numbered 1 to $n$) play a round robin tournament (i.e. each pair of contestants compete against each other exactly once); no draws are possible. Define an upset to be a pair $(i, j)$ where$ i > j$ and contestant $i$ wins against contestant $j$. At the end of the tournament, contestant $i$ has $s_i$ wins for each $1 \le i \le n$. The result of the tournament is defined as the $n$-tuple $(s_1, s_2, \cdots , s_n)$. An $n$-tuple $S$ is called interesting if, among the distinct tournaments that produce $S$ as a result, the number of tournaments with an odd number of upsets is not equal to the number of tournaments with an even number of upsets. Find the number of interesting $n$-tuples in terms of $n$. [i](Two tournaments are considered distinct if the outcome of some match differs.)[/i]

1978 Putnam, A2

Let $a,b, p_1 ,p_2, \ldots, p_n$ be real numbers with $a \ne b$. Define $f(x)= (p_1 -x) (p_2 -x) \cdots (p_n -x)$. Show that $$ \text{det} \begin{pmatrix} p_1 & a& a & \cdots & a \\ b & p_2 & a & \cdots & a\\ b & b & p_3 & \cdots & a\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ b & b& b &\cdots &p_n \end{pmatrix}= \frac{bf(a) -af(b)}{b-a}.$$

2023 SEEMOUS, P1

Prove that if $A{}$ and $B{}$ are $n\times n$ matrices with complex entries which satisfy \[A=AB-BA+A^2B-2ABA+BA^2+A^2BA-ABA^2,\]then $\det(A)=0$.