This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 13

2023-24 IOQM India, 7

Unconventional dice are to be designed such that the six faces are marked with numbers from $1$ to $6$ with $1$ and $2$ appearing on opposite faces. Further, each face is colored either red or yellow with opposite faces always of the same color. Two dice are considered to have the same design if one of them can be rotated to obtain a dice that has the same numbers and colors on the corresponding faces as the other one. Find the number of distinct dice that can be designed.

2022/2023 Tournament of Towns, P1

There are 2023 dice on the table. For 1 dollar, one can pick any dice and put it back on any of its four (other than top or bottom) side faces. How many dollars at a minimum will guarantee that all the dice have been repositioned to show equal number of dots on top faces? [i]Egor Bakaev[/i]

2018 Bangladesh Mathematical Olympiad, 3

BdMO National 2018 Higher Secondary P3 Nazia rolls four fair six-sided dice. She doesn’t see the results. Her friend Faria tells her that the product of the numbers is $144$. Faria also says the sum of the dice, $S$ satisfies $14\leq S\leq 18$ . Nazia tells Faria that $S$ cannot be one of the numbers in the set {$14,15,16,17,18$} if the product is $144$. Which number in the range {$14,15,16,17,18$} is an impossible value for $S$ ?

1997 Poland - Second Round, 5

We have thrown $k$ white dice and $m$ black dice. Find the probability that the remainder modulo $7$ of the sum of the numbers on the white dice is equal to the remainder modulo $7$ of the sum of the numbers on the black dice.

2008 ITest, 12

One day while the Kubik family attends one of Michael's baseball games, Tony gets bored and walks to the creek a few yards behind the baseball field. One of Tony's classmates Mitchell sees Tony and goes to join him. While playing around the creek, the two boys find an ordinary six-sided die buried in sediment. Mitchell washes it off in the water and challenges Tony to a contest. Each of the boys rolls the die exactly once. Mitchell's roll is $3$ higher than Tony's. "Let's play once more," says Tony. Let $a/b$ be the probability that the difference between the outcomes of the two dice is again exactly $3$ (regardless of which of the boys rolls higher), where $a$ and $b$ are relatively prime positive integers. Find $a+b$.

2023 China Second Round, 7

Tags: possibility , dice
We throw a dice three times and the numbers are $x,y,z$ find out the possibility of $\binom{7}{x}<\binom{7}{y}<\binom{7}{z}$

2022 AMC 10, 12

Tags: probability , dice
A pair of fair $6$-sided dice is rolled $n$ times. What is the least value of $n$ such that the probability that the sum of the numbers face up on a roll equals $7$ at least once is greater than $\frac{1}{2}$? $\textbf{(A) } 2 \qquad \textbf{(B) } 3 \qquad \textbf{(C) } 4 \qquad \textbf{(D) } 5 \qquad \textbf{(E) } 6$

2023 AMC 12/AHSME, 23

Tags: dice
When $n$ standard six-sided dice are rolled, the product of the numbers rolled can be any of $936$ possible values. What is $n$? $\textbf{(A)}~6\qquad\textbf{(B)}~8\qquad\textbf{(C)}~9\qquad\textbf{(D)}~10\qquad\textbf{(E)}~11$

2016 NIMO Problems, 4

A fair 100-sided die is rolled twice, giving the numbers $a$ and $b$ in that order. If the probability that $a^2-4b$ is a perfect square is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers, compute $100m+n$. [i] Proposed by Justin Stevens [/i]

2016 AIME Problems, 2

Tags: dice , probability
Two dice appear to be standard dice with their faces numbered from $1$ to $6$, but each die is weighted so that the probability of rolling the number $k$ is directly proportional to $k$. The probability of rolling a $7$ with this pair of dice is $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

2023 CIIM, 2

A toymaker has $k$ dice at his disposal, each with $6$ blank sides. On each side of each of these dice, the toymaker must draw one of the digits $0, 1, 2, \ldots , 9$. Determine (in terms of $k$) the largest integer $n$ such that the toymaker can draw digits on the $k$ dice such that, for any positive integer $r \leq n$, it is possible to choose some of the $k$ dice and form with them the decimal representation of $r$. [b]Note:[/b] The digits 6 and 9 are distinguishable: they appear as [u]6[/u] and [u]9[/u].

2018 AIME Problems, 13

Tags: probability , dice
Misha rolls a standard, fair six-sided die until she rolls $1$-$2$-$3$ in that order on three consecutive rolls. The probability that she will roll the die an odd number of times is $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2022 AMC 12/AHSME, 12

Tags: probability , dice
Kayla rolls four fair $6$-sided dice. What is the probability that at least one of the numbers Kayla rolls is greater than $4$ and at least two of the numbers she rolls are greater than $2$? $\textbf{(A)}\frac{2}{3}~\textbf{(B)}\frac{19}{27}~\textbf{(C)}\frac{59}{81}~\textbf{(D)}\frac{61}{81}~\textbf{(E)}\frac{7}{9}$