This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 573

2018 Malaysia National Olympiad, A2

An integer has $2018$ digits and is divisible by $7$. The first digit is $d$, while all the other digits are $2$. What is the value of $d$?

1996 May Olympiad, 2

Considering the three-digit natural numbers, how many of them, when adding two of their digits, are double of their remainder? Justify your answer.

2008 Denmark MO - Mohr Contest, 5

For each positive integer $n$, a new number $t_n$ is formed from the numbers $2^n$ and $5^n$ which consists of the digits from $2^n$ followed by the digits from $5^n$. For example, $t_4$ is $16625$. How many digits does the number $t_{2008}$ have?

1912 Eotvos Mathematical Competition, 1

How many positive integers of $n$ digits exist such that each digit is $1, 2$, or $3$? How many of these contain all three of the digits $1, 2$, and $3$ at least once?

1964 Dutch Mathematical Olympiad, 5

Consider a sequence of non-negative integers g$_1,g_2,g_3,...$ each consisting of three digits (numbers smaller than $100$ are also written with three digits; the number $27$, for example, is written as $027$). Each number consists of the preceding by taking the product of the three digits that make up the preceding. The resulting sequence is of course dependent on the choice of $g_1$ (e.g. $g_1 = 359$ leads to $g_2= 135$, $g_3= 015$, $g_4 = 000$).Prove that independent of the choice of $g_1$: (a) $g_{n+1}\le g_n$ (b) $g_{10}= 000$.

2016 Brazil Team Selection Test, 1

For each positive integer $n$, determine the digits of units and hundreds of the decimal representation of the number $$\frac{1 + 5^{2n+1}}{6}$$

1990 IMO Longlists, 98

Find all natural numbers $ n$ for which every natural number whose decimal representation has $ n \minus{} 1$ digits $ 1$ and one digit $ 7$ is prime.

1994 Swedish Mathematical Competition, 1

Tags: algebra , equation , digit
$x\sqrt8 + \frac{1}{x\sqrt8} = \sqrt8$ has two real solutions $x_1, x_2$. The decimal expansion of $x_1$ has the digit $6$ in place $1994$. What digit does $x_2$ have in place $1994$?

1977 Germany Team Selection Test, 4

When $4444^{4444}$ is written in decimal notation, the sum of its digits is $ A.$ Let $B$ be the sum of the digits of $A.$ Find the sum of the digits of $ B.$ ($A$ and $B$ are written in decimal notation.)

1966 Kurschak Competition, 2

Show that the $n$ digits after the decimal point in $(5 +\sqrt{26})^n$ are all equal.

2015 Belarus Team Selection Test, 2

In the sequence of digits $2,0,2,9,3,...$ any digit it equal to the last digit in the decimal representation of the sum of four previous digits. Do the four numbers $2,0,1,5$ in that order occur in the sequence? Folklore

2017 Latvia Baltic Way TST, 7

All six-digit natural numbers from $100000$ to $999999$ are written on the page in ascending order without spaces. What is the largest value of$ k$ for which the same $k$-digit number can be found in at least two different places in this string?

2018 Ecuador Juniors, 5

We call a positive integer [i]interesting [/i] if the number and the number with its digits written in reverse order both leave remainder $2$ in division by $4$. a) Determine if $2018$ is an interesting number. b) For every positive integer $n$, find how many interesting $n$-digit numbers there are.

2018 India PRMO, 3

Consider all $6$-digit numbers of the form $abccba$ where $b$ is odd. Determine the number of all such $6$-digit numbers that are divisible by $7$.

2016 Israel National Olympiad, 3

Denote by $S(n)$ the sum of digits of $n$. Given a positive integer $N$, we consider the following process: We take the sum of digits $S(N)$, then take its sum of digits $S(S(N))$, then its sum of digits $S(S(S(N)))$... We continue this until we are left with a one-digit number. We call the number of times we had to activate $S(\cdot)$ the [b]depth[/b] of $N$. For example, the depth of 49 is 2, since $S(49)=13\rightarrow S(13)=4$, and the depth of 45 is 1, since $S(45)=9$. [list=a] [*] Prove that every positive integer $N$ has a finite depth, that is, at some point of the process we get a one-digit number. [*] Define $x(n)$ to be the [u]minimal[/u] positive integer with depth $n$. Find the residue of $x(5776)\mod 6$. [*] Find the residue of $x(5776)-x(5708)\mod 2016$. [/list]

2018 Pan-African Shortlist, N2

A positive integer is called special if its digits can be arranged to form an integer divisible by $4$. How many of the integers from $1$ to $2018$ are special?

1999 Slovenia National Olympiad, Problem 1

Tags: algebra , digit
Two three-digit numbers are given. The hundreds digit of each of them is equal to the units digit of the other. Find these numbers if their difference is $297$ and the sum of digits of the smaller number is $23$.

Kvant 2019, M2543

Let $a$ and $b$ be 2019-digit numbers. Exactly 12 digits of $a$ are non-zero: the five leftmost and seven rightmost, and exactly 14 digits of $b$ are non-zero: the five leftmost and nine rightmost. Prove that the largest common divisor of $a$ and $b$ has no more than 14 digits. [i]Proposed by L. Samoilov[/i]

2016 Czech-Polish-Slovak Junior Match, 2

Find the largest integer $d$ divides all three numbers $abc, bca$ and $cab$ with $a, b$ and $c$ being some nonzero and mutually different digits. Czech Republic

1985 All Soviet Union Mathematical Olympiad, 396

Is there any numbber $n$, such that the sum of its digits in the decimal notation is $1000$, and the sum of its square digits in the decimal notation is $1000000$?

1984 Spain Mathematical Olympiad, 2

Find the number of five-digit numbers whose square ends in the same five digits in the same order.

2014 Bosnia and Herzegovina Junior BMO TST, 1

Let $x$, $y$ and $z$ be nonnegative integers. Find all numbers in form $\overline{13xy45z}$ divisible with $792$, where $x$, $y$ and $z$ are digits.

2020 Regional Competition For Advanced Students, 2

The set $M$ consists of all $7$-digit positive integer numbers that contain (in decimal notation) each of the digits $1, 3, 4, 6, 7, 8$ and $9$ exactly once. (a) Find the smallest positive difference $d$ of two numbers from $M$. (b) How many pairs $(x, y)$ with $x$ and $y$ from M are there for which $x - y = d$? (Gerhard Kirchner)

2004 May Olympiad, 1

Javier multiplies four digits, not necessarily different, and obtains a number ending in $7$. Determine how much the sum of the four digits that Javier multiplies can be worth. Give all the possibilities.

2016 Dutch IMO TST, 3

Let $k$ be a positive integer, and let $s(n)$ denote the sum of the digits of $n$. Show that among the positive integers with $k$ digits, there are as many numbers $n$ satisfying $s(n) < s(2n)$ as there are numbers $n$ satisfying $s(n) > s(2n)$.