This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 573

1971 All Soviet Union Mathematical Olympiad, 144

Prove that for every natural $n$ there exists a number, containing only digits "$1$" and "$2$" in its decimal notation, that is divisible by $2^n$ ( $n$-th power of two ).

1949 Moscow Mathematical Olympiad, 171

* Prove that a number of the form $2^n$ for a positive integer $n$ may begin with any given combination of digits.

2019 Durer Math Competition Finals, 6

Find the smallest multiple of $81$ that only contains the digit $1$. How many $ 1$’s does it contain?

1989 Tournament Of Towns, (205) 3

What digit must be put in place of the "$?$" in the number $888...88?999...99$ (where the $8$ and $9$ are each written $50$ times) in order that the resulting number is divisible by $7$? (M . I. Gusarov)

1998 IMO Shortlist, 7

Prove that for each positive integer $n$, there exists a positive integer with the following properties: It has exactly $n$ digits. None of the digits is 0. It is divisible by the sum of its digits.

2017 Abels Math Contest (Norwegian MO) Final, 3a

Nils has a telephone number with eight different digits. He has made $28$ cards with statements of the type “The digit $a$ occurs earlier than the digit $b$ in my telephone number” – one for each pair of digits appearing in his number. How many cards can Nils show you without revealing his number?

2022 AMC 10, 3

Tags: digit , counting
How many three-digit positive integers have an odd number of even digits? $\textbf{(A) }150\qquad\textbf{(B) }250\qquad\textbf{(C) }350\qquad\textbf{(D) }450\qquad\textbf{(E) }550$

2022 JBMO Shortlist, N6

Find all positive integers $n$ for which there exists an integer multiple of $2022$ such that the sum of the squares of its digits is equal to $n$.

1975 IMO, 4

When $4444^{4444}$ is written in decimal notation, the sum of its digits is $ A.$ Let $B$ be the sum of the digits of $A.$ Find the sum of the digits of $ B.$ ($A$ and $B$ are written in decimal notation.)

1984 Spain Mathematical Olympiad, 7

Consider the natural numbers written in the decimal system. (a) Find the smallest number which decreases five times when its first digit is erased. Which form do all numbers with this property have? (b) Prove that there is no number that decreases $12$ times when its first digit is erased. (c) Find the necessary and sufficient condition on $k$ for the existence of a natural number which is divided by $k$ when its first digit is erased.

2008 BAMO, 1

Call a year [i]ultra-even[/i] if all of its digits are even. Thus $2000,2002,2004,2006$, and $2008$ are all [i]ultra-even[/i] years. They are all $2$ years apart, which is the shortest possible gap. $2009$ is not an [i]ultra-even[/i] year because of the $9$, and $2010$ is not an ultra-even year because of the $1$. (a) In the years between the years $1$ and $10000$, what is the longest possible gap between two [i]ultra-even[/i] years? Give an example of two ultra-even years that far apart with no [i]ultra-even[/i] years between them. Justify your answer. (b) What is the second-shortest possible gap (that is, the shortest gap longer than $2$ years) between two [i]ultra-even[/i] years? Again, give an example, and justify your answer.

2001 Portugal MO, 3

How many consecutive zeros are there at the end of the number $2001! = 2001 \times 2000 \times ... \times 3 \times 2 \times 1$ ?

VMEO IV 2015, 12.4

We call the [i]tribi [/i] of a positive integer $k$ (denoted $T(k)$) the number of all pairs $11$ in the binary representation of $k$. e.g $$T(1)=T(2)=0,\, T(3)=1, \,T(4)=T(5)=0,\,T(6)=1,\,T(7)=2.$$ Calculate $S_n=\sum_{k=1}^{2^n}T(K)$.

2024 Germany Team Selection Test, 2

Show that there exists a real constant $C>1$ with the following property: For any positive integer $n$, there are at least $C^n$ positive integers with exactly $n$ decimal digits, which are divisible by the product of their digits. (In particular, these $n$ digits are all non-zero.) [i]Proposed by Jean-Marie De Koninck and Florian Luca[/i]

1980 IMO, 3

Find the digits left and right of the decimal point in the decimal form of the number \[ (\sqrt{2} + \sqrt{3})^{1980}. \]

2016 May Olympiad, 1

We say that a four-digit number $\overline{abcd}$ , which starts at $a$ and ends at $d$, is [i]interchangeable [/i] if there is an integer $n >1$ such that $n \times \overline{abcd}$ is a four-digit number that begins with $d$ and ends with $a$. For example, $1009$ is interchangeable since $1009\times 9=9081$. Find the largest interchangeable number.

2012 Denmark MO - Mohr Contest, 4

Two two-digit numbers $a$ and b satisfy that the product $a \cdot b$ divides the four-digit number one gets by writing the two digits in $a$ followed by the two digits in $b$. Determine all possible values of $a$ and $b$.

2016 Regional Olympiad of Mexico Northeast, 6

A positive integer $N$ is called [i]northern[/i] if for each digit $d > 0$, there exists a divisor of $N$ whose last digit is $d$. How many [i]northern [/i] numbers less than $2016$ are there with the fewest number of divisors as possible?

2005 iTest, 27

Find the sum of all non-zero digits that can repeat at the end of a perfect square. (For example, if $811$ were a perfect square, $1$ would be one of these non-zero digits.)

2009 Argentina National Olympiad, 6

A sequence $a_0,a_1,a_2,...,a_n,...$ is such that $a_0=1$ and, for each $n\ge 0$ , $a_{n+1}=m \cdot a_n$ , where $m$ is an integer between $2$ and $9$ inclusive. Also, every integer between $2$ and $9$ has even been used at least once to get $a_{n+1} $ from $a_n$ . Let $Sn$ the sum of the digits of $a_n$ , $n=0,1,2,...$ . Prove that $S_n \ge S_{n+1}$ for infinite values ​​of $n$.

2006 Junior Balkan Team Selection Tests - Romania, 4

For a positive integer $n$ denote $r(n)$ the number having the digits of $n$ in reverse order- for example, $r(2006) = 6002$. Prove that for any positive integers a and b the numbers $4a^2 + r(b)$ and $4b^2 + r(a)$ can not be simultaneously squares.

2021 Middle European Mathematical Olympiad, 8

Prove that there are infinitely many positive integers $n$ such that $n^2$ written in base $4$ contains only digits $1$ and $2$.

1969 IMO Shortlist, 40

$(MON 1)$ Find the number of five-digit numbers with the following properties: there are two pairs of digits such that digits from each pair are equal and are next to each other, digits from different pairs are different, and the remaining digit (which does not belong to any of the pairs) is different from the other digits.

2022 Regional Competition For Advanced Students, 2

Determine the number of ten-digit positive integers with the following properties: $\bullet$ Each of the digits $0, 1, 2, . . . , 8$ and $9$ is contained exactly once. $\bullet$ Each digit, except $9$, has a neighbouring digit that is larger than it. (Note. For example, in the number $1230$, the digits $1$ and $3$ are the neighbouring digits of $2$ while $2$ and $0$ are the neighbouring digits of $3$. The digits $1$ and $0$ have only one neighbouring digit.) [i](Karl Czakler)[/i]

1970 IMO Longlists, 59

For which digits $a$ do exist integers $n \geq 4$ such that each digit of $\frac{n(n+1)}{2}$ equals $a \ ?$