This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 573

2012 Tournament of Towns, 1

The decimal representation of an integer uses only two different digits. The number is at least $10$ digits long, and any two neighbouring digits are distinct. What is the greatest power of two that can divide this number?

II Soros Olympiad 1995 - 96 (Russia), 10.2

Find a number that increases by a factor of $1996$ if the digits in the first and fifth places after the decimal place are swapped in its decimal notation.

2021 Israel National Olympiad, P1

Sophie wrote on a piece of paper every integer number from 1 to 1000 in decimal notation (including both endpoints). [b]a)[/b] Which digit did Sophie write the most? [b]b)[/b] Which digit did Sophie write the least?

1992 IMO Shortlist, 17

Let $ \alpha(n)$ be the number of digits equal to one in the binary representation of a positive integer $ n.$ Prove that: (a) the inequality $ \alpha(n) (n^2 ) \leq \frac{1}{2} \alpha(n)(\alpha(n) + 1)$ holds; (b) the above inequality is an equality for infinitely many positive integers, and (c) there exists a sequence $ (n_i )^{\infty}_1$ such that $ \frac{\alpha ( n^2_i )}{\alpha (n_i }$ goes to zero as $ i$ goes to $ \infty.$ [i]Alternative problem:[/i] Prove that there exists a sequence a sequence $ (n_i )^{\infty}_1$ such that $ \frac{\alpha ( n^2_i )}{\alpha (n_i )}$ (d) $ \infty;$ (e) an arbitrary real number $ \gamma \in (0,1)$; (f) an arbitrary real number $ \gamma \geq 0$; as $ i$ goes to $ \infty.$

2021 Polish Junior MO First Round, 1

Is there a six-digit number where every two consecutive digits make up a certain number two-digit number that is the square of an integer? Justify your answer.

2018 Malaysia National Olympiad, B2

Let $a$ and $b$ be positive integers such that (i) both $a$ and $b$ have at least two digits; (ii) $a + b$ is divisible by $10$; (iii) $a$ can be changed into $b$ by changing its last digit. Prove that the hundreds digit of the product $ab$ is even.

2017 Hanoi Open Mathematics Competitions, 7

Determine two last digits of number $Q = 2^{2017} + 2017^2$

2019 Polish Junior MO First Round, 1

The natural number $n$ was multiplied by $3$, resulting in the number $999^{1000}$. Find the unity digit of $n$.

2009 Regional Olympiad of Mexico Center Zone, 4

Let $N = 2 \: \: \underbrace {99… 9} _{n \,\,\text {times}} \: \: 82 \: \: \underbrace {00… 0} _{n \,\, \text {times} } \: \: 29$. Prove that $N$ can be written as the sum of the squares of $3$ consecutive natural numbers.

2013 Grand Duchy of Lithuania, 3

The number $1234567890$ is written on the blackboard. Two players $A$ and $B$ play the following game taking alternate moves. In one move, a player erases the number which is written on the blackboard, say, $m$, subtracts from $m$ any positive integer not exceeding the sum of the digits of $m$ and writes the obtained result instead of $m$. The first player who reduces the number written on the blackboard to $0$ wins. Determine which of the players has the winning strategy if the player $A$ makes the first move.

2001 Denmark MO - Mohr Contest, 2

If there is a natural number $n$ such that the number $n!$ has exactly $11$ zeros at the end? (With $n!$ is denoted the number $1\cdot 2\cdot 3 \cdot ... (n - )1 \cdot n$).

2022 Mediterranean Mathematics Olympiad, 2

(a) Decide whether there exist two decimal digits $a$ and $b$, such that every integer with decimal representation $ab222 ... 231$ is divisible by $73$. (b) Decide whether there exist two decimal digits $c$ and $d$, such that every integer with decimal representation $cd222... 231$ is divisible by $79$.

1986 All Soviet Union Mathematical Olympiad, 430

The decimal notation of three natural numbers consists of equal digits: $n$ digits $x$ for $a$, $n$ digits $y$ for $b$ and $2n$ digits $z$ for $c$. For every $n > 1$ find all the possible triples of digits $x,y,z$ such, that $a^2 + b = c$

2024 Middle European Mathematical Olympiad, 7

Define [i]glueing[/i] of positive integers as writing their base ten representations one after another and interpreting the result as the base ten representation of a single positive integer. Find all positive integers $k$ for which there exists an integer $N_k$ with the following property: for all $n \ge N_k$, we can glue the numbers $1,2,\dots,n$ in some order so that the result is a number divisible by $k$. [i]Remark[/i]. The base ten representation of a positive integer never starts with zero. [i]Example[/i]. Glueing $15, 14, 7$ in this order makes $15147$.

2015 Saudi Arabia JBMO TST, 1

A $2015$- digit natural number $A$ has the property that any $5$ of it's consecutive digits form a number divisible by $32$. Prove that $A$ is divisible by $2^{2015}$

2008 Regional Olympiad of Mexico Center Zone, 5

Each positive integer number $n \ ge 1$ is assigned the number $p_n$ which is the product of all its non-zero digits. For example, $p_6 = 6$, $p_ {32} = 6$, $p_ {203} = 6$. Let $S = p_1 + p_2 + p_3 + \dots + p_ {999}$. Find the largest prime that divides $S $.

2015 Balkan MO Shortlist, N7

Positive integer $m$ shall be called [i]anagram [/i] of positive $n$ if every digit $a$ appears as many times in the decimal representation of $m$ as it appears in the decimal representation of $n$ also. Is it possible to find $4$ different positive integers such that each of the four to be [i]anagram [/i] of the sum of the other $3$? (Bulgaria)

2013 May Olympiad, 2

Elisa adds the digits of her year of birth and observes that the result coincides with the last two digits of the year her grandfather was born. Furthermore, the last two digits of the year she was born are precisely the current age of her grandfather. Find the year Elisa was born and the year her grandfather was born.

1978 Swedish Mathematical Competition, 2

Let $s_m$ be the number $66\cdots 6$ with $m$ digits $6$. Find \[ s_1 + s_2 + \cdots + s_n \]

2010 Saudi Arabia Pre-TST, 1.3

1) Let $a$ and $b$ be relatively prime positive integers. Prove that there is a positive integer $n$ such that $1 \le n \le b$ and $b$ divides $a^n - 1$. 2) Prove that there is a multiple of $7^{2010}$ of the form $99... 9$ ($n$ nines), for some positive integer $n$ not exceeding $7^{2010}$.

1981 Brazil National Olympiad, 2

Show that there are at least $3$ and at most $4$ powers of $2$ with $m$ digits. For which $m$ are there $4$?

1998 Moldova Team Selection Test, 10

Let $P(x)$ denote the product of all (decimal) digits of a natural number $x$. For any positive integer $x_1$, define the sequence $(x_n)$ recursively by $x_{n+1} = x_n + P(x_n)$. Prove or disprove that the sequence $(x_n)$ is necessarily bounded.

2020 Chile National Olympiad, 1

Determine all positive integers $n$ such that the decimal representation of the number $6^n + 1$ has all its digits the same.

2020 Denmark MO - Mohr Contest, 3

Which positive integers satisfy the following three conditions? a) The number consists of at least two digits. b) The last digit is not zero. c) Inserting a zero between the last two digits yields a number divisible by the original number.

2018 Junior Regional Olympiad - FBH, 2

On blackboard is written $3$ digit number so all three digits are distinct than zero. Out of it, we made three $2$ digit numbers by crossing out first digit of original number, crossing out second digit of original number and crossing out third digit of original number. Sum of those three numbers is $293$. Which number is written on blackboard?