This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4

2014 Greece National Olympiad, 3

For even positive integer $n$ we put all numbers $1,2,...,n^2$ into the squares of an $n\times n$ chessboard (each number appears once and only once). Let $S_1$ be the sum of the numbers put in the black squares and $S_2$ be the sum of the numbers put in the white squares. Find all $n$ such that we can achieve $\frac{S_1}{S_2}=\frac{39}{64}.$

1982 IMO Shortlist, 19

Let $M$ be the set of real numbers of the form $\frac{m+n}{\sqrt{m^2+n^2}}$, where $m$ and $n$ are positive integers. Prove that for every pair $x \in M, y \in M$ with $x < y$, there exists an element $z \in M$ such that $x < z < y.$

1982 IMO Longlists, 22

Let $M$ be the set of real numbers of the form $\frac{m+n}{\sqrt{m^2+n^2}}$, where $m$ and $n$ are positive integers. Prove that for every pair $x \in M, y \in M$ with $x < y$, there exists an element $z \in M$ such that $x < z < y.$

2014 Contests, 3

For even positive integer $n$ we put all numbers $1,2,...,n^2$ into the squares of an $n\times n$ chessboard (each number appears once and only once). Let $S_1$ be the sum of the numbers put in the black squares and $S_2$ be the sum of the numbers put in the white squares. Find all $n$ such that we can achieve $\frac{S_1}{S_2}=\frac{39}{64}.$