This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 126

MIPT student olimpiad spring 2023, 4

Is it true that if two linear subspaces $V$ and $W$ of a Hilbert space are closed, then their sum $V+W$ is also closed?

2012 India National Olympiad, 1

Let $ABCD$ be a quadrilateral inscribed in a circle. Suppose $AB=\sqrt{2+\sqrt{2}}$ and $AB$ subtends $135$ degrees at center of circle . Find the maximum possible area of $ABCD$.

2011 Pre-Preparation Course Examination, 1

[b]a)[/b] prove that for every compressed set $K$ in the space $\mathbb R^3$, the function $f:\mathbb R^3 \longrightarrow \mathbb R$ that $f(p)=inf\{|p-k|,k\in K\}$ is continuous. [b]b)[/b] prove that we cannot cover the sphere $S^2\subseteq \mathbb R^3$ with it's three closed sets, such that none of them contain two antipodal points.

2011 Pre-Preparation Course Examination, 3

Tags: topology
[b]a)[/b] show that every curve $f:I \longrightarrow S^2$ is homotop with a path with another curve in $S^2$ like $g$ such that Image of $g$, doesn't contain all of $S^2$. [b]b)[/b] conclude that $S^2$ is simple connected. [b]c)[/b] construct a topological space such that it's fundamental group is $\mathbb Z_2$.

2000 Tuymaada Olympiad, 1

Can the plane be coloured in 2000 colours so that any nondegenerate circle contains points of all 2000 colors?

2021 Alibaba Global Math Competition, 11

Let $M$ be a compact orientable $2n$-manifold with boundary, where $n \ge 2$. Suppose that $H_0(M;\mathbb{Q}) \cong \mathbb{Q}$ and $H_i(M;\mathbb{Q})=0$ for $i>0$. Prove that the order of $H_{n-1}(\partial M; \mathbb{Z})$ is a square number.

2011 Iran MO (3rd Round), 1

(a) We say that a hyperplane $H$ that is given with this equation \[H=\{(x_1,\dots,x_n)\in \mathbb R^n \mid a_1x_1+ \dots +a_nx_n=b\}\] ($a=(a_1,\dots,a_n)\in \mathbb R^n$ and $b\in \mathbb R$ constant) bisects the finite set $A\subseteq \mathbb R^n$ if each of the two halfspaces $H^+=\{(x_1,\dots,x_n)\in \mathbb R^n \mid a_1x_1+ \dots +a_nx_n>b\}$ and $H^-=\{(x_1,\dots,x_n)\in \mathbb R^n \mid a_1x_1+ \dots +a_nx_n<b\}$ have at most $\lfloor \tfrac{|A|}{2}\rfloor$ points of $A$. Suppose that $A_1,\dots,A_n$ are finite subsets of $\mathbb R^n$. Prove that there exists a hyperplane $H$ in $\mathbb R^n$ that bisects all of them at the same time. (b) Suppose that the points in $B=A_1\cup \dots \cup A_n$ are in general position. Prove that there exists a hyperplane $H$ such that $H^+\cap A_i$ and $H^-\cap A_i$ contain exactly $\lfloor \tfrac{|A_i|}{2}\rfloor$ points of $A_i$. (c) With the help of part (b), show that the following theorem is true: Two robbers want to divide an open necklace that has $d$ different kinds of stones, where the number of stones of each kind is even, such that each of the robbers receive the same number of stones of each kind. Show that the two robbers can accomplish this by cutting the necklace in at most $d$ places.

2009 Miklós Schweitzer, 7

Let $ H$ be an arbitrary subgroup of the diffeomorphism group $ \mathsf{Diff}^\infty(M)$ of a differentiable manifold $ M$. We say that an $ \mathcal C^\infty$-vector field $ X$ is [i]weakly tangent[/i] to the group $ H$, if there exists a positive integer $ k$ and a $ \mathcal C^\infty$-differentiable map $ \varphi \mathrel{: } \mathord{]} \minus{} \varepsilon,\varepsilon\mathord{[}^k\times M\to M$ such that (i) for fixed $ t_1,\dots,t_k$ the map \[ \varphi_{t_1,\dots,t_k} : x\in M\mapsto \varphi(t_1,\dots,t_k,x)\] is a diffeomorphism of $ M$, and $ \varphi_{t_1,\dots,t_k}\in H$; (ii) $ \varphi_{t_1,\dots,t_k}\in H \equal{} \mathsf{Id}$ whenever $ t_j \equal{} 0$ for some $ 1\leq j\leq k$; (iii) for any $ \mathcal C^\infty$-function $ f: M\to \mathbb R$ \[ X f \equal{} \left.\frac {\partial^k(f\circ\varphi_{t_1,\dots,t_k})}{\partial t_1\dots\partial t_k}\right|_{(t_1,\dots,t_k) \equal{} (0,\dots,0)}.\] Prove, that the commutators of $ \mathcal C^\infty$-vector fields that are weakly tangent to $ H\subset \textsf{Diff}^\infty(M)$ are also weakly tangent to $ H$.

1996 IMC, 6

Tags: topology , geometry
Upper content of a subset $E$ of the plane $\mathbb{R}^{2}$ is defined as $$\mathcal{C}(E)=\inf\{\sum_{i=1}^{n} \text{diam}(E_{i})\}$$ where $\inf$ is taken over all finite families of sets $E_{1},\dots,E_{n}$ $n\in \mathbb{N}$, in $\mathbb{R}^{2}$ such that $E\subset \bigcup_{i=1}^{n}E_{i}$. Lower content of $E$ is defined as $$\mathcal{K}(E)=\sup\{\text{length}(L) |\, L \text{ is a closed line segment onto which $E$ can be contracted}\}$$. Prove that i) $\mathcal{C}(L)=\text{length}(L)$ if $L$ is a closed line segment; ii) $\mathcal{C}(E) \geq \mathcal{K}(E)$; iii) the equality in ii) is not always true even if $E$ is compact.

1992 Miklós Schweitzer, 7

Tags: topology
Prove that in a topological space X , if all discrete subspaces have compact closure , then X is compact.

1962 Miklós Schweitzer, 3

Let $ A$ and $ B$ be two Abelian groups, and define the sum of two homomorphisms $ \eta$ and $ \chi$ from $ A$ to $ B$ by \[ a( \eta\plus{}\chi)\equal{}a\eta\plus{}a\chi \;\textrm{for all}\ \;a \in A\ .\] With this addition, the set of homomorphisms from $ A$ to $ B$ forms an Abelian group $ H$. Suppose now that $ A$ is a $ p$-group ( $ p$ a prime number). Prove that in this case $ H$ becomes a topological group under the topology defined by taking the subgroups $ p^kH \;(k\equal{}1,2,...)$ as a neighborhood base of $ 0$. Prove that $ H$ is complete in this topology and that every connected component of $ H$ consists of a single element. When is $ H$ compact in this topology? [L. Fuchs]

1964 Miklós Schweitzer, 5

Is it true that on any surface homeomorphic to an open disc there exist two congruent curves homeomorphic to a circle?

2018 Miklós Schweitzer, 11

Tags: topology
We call an $m$-dimensional smooth manifold [i]parallelizable[/i] if it admits $m$ smooth tangent vector fields that are linearly independent at all points. Show that if $M$ is a closed orientable $2n$-dimensional smooth manifold of Euler characteristic $0$ that has an immersion into a parallelizable smooth $(2n+1)$-dimensional manifold $N$, then $M$ is itself parallelizable.

2012 Graduate School Of Mathematical Sciences, The Master Course, Kyoto University, 4

Define mapping $F : \mathbb{R}^4\rightarrow \mathbb{R}^4$ as $F(x,\ y,\ z,\ w)=(xy,\ y,\ z,\ w)$ and let mapping $f : S^3\rightarrow \mathbb{R}^4$ be restriction of $F$ to 3 dimensional ball $S^3=\{(x,\ y,\ z,\ w)\in{\mathbb{R}^4} | x^2+y^2+z^2+w^2=1\}$. Find the rank of $df_p$, or the differentiation of $f$ at every point $p$ in $S^3$.

2009 Spain Mathematical Olympiad, 3

Some edges are painted in red. We say that a coloring of this kind is [i]good[/i], if for each vertex of the polyhedron, there exists an edge which concurs in that vertex and is not painted red. Moreover, we say that a coloring where some of the edges of a regular polyhedron is [i]completely good[/i], if in addition to being [i]good[/i], no face of the polyhedron has all its edges painted red. What regular polyhedrons is equal the maximum number of edges that can be painted in a [i]good[/i] color and a [i]completely good[/i]? Explain your answer.

2007 Nicolae Păun, 4

Construct a function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ having the following properties: $ \text{(i)} f $ is not monotonic on any real interval. $ \text{(ii)} f $ has Darboux property (intermediate value property) on any real interval. $ \text{(iii)} f(x)\leqslant f\left( x+1/n \right) ,\quad \forall x\in\mathbb{R} ,\quad \forall n\in\mathbb{N} $ [i]Alexandru Cioba[/i]

1996 Miklós Schweitzer, 8

Prove that a simply connected, closed manifold (i.e., compact, no boundary) cannot contain a closed, smooth submanifold of codimension 1, with odd Euler characteristic.

1991 Arnold's Trivium, 38

Calculate the integral of the Gaussian curvature of the surface \[z^4+(x^2+y^2-1)(2x^2+3y^2-1)=0\]

2010 Miklós Schweitzer, 9

For each $M$ m-dimensional closed $C^{\infty}$ set , assign a $G(m)$ in some euclidean space $\mathbb{R}^{q}$. Denote by $\mathbb{R} \mathbb{P}^{q}$ a $q$-dimensional real projecive space. A$G(M) \subseteq \times \mathbb{R} \mathbb{P}^{q}$. The set consists of $(x,e)$ pairs for which $x \in M \subseteq \mathbb {P}^{q} $ and $e \subseteq \mathbb {R}^{q+1}= \mathbb{R}^{q} \times \mathbb{R}$ and $\mathrm{a} (0, \ldots,0,1) \in \mathbb{R}^{q+1}$ in a stretched $(m+1)$-dimensional linear subspace. Prove that if $N$ is a $n$-dimensional closed set $C^{\infty}$, then $P=G(M \times M)$ and $Q=G(M) \times G(N)$ are cobordant , that is, there exists a $(2m+2n+1)$-dimensional compact , flanged set $C^{\infty}$ with a disjoint union of $P$ and $Q$.

2018 USA TSTST, 9

Show that there is an absolute constant $c < 1$ with the following property: whenever $\mathcal P$ is a polygon with area $1$ in the plane, one can translate it by a distance of $\frac{1}{100}$ in some direction to obtain a polygon $\mathcal Q$, for which the intersection of the interiors of $\mathcal P$ and $\mathcal Q$ has total area at most $c$. [i]Linus Hamilton[/i]

KoMaL A Problems 2022/2023, A.836

For every \(i \in \mathbb{N}\) let \(A_i\), \(B_i\) and \(C_i\) be three finite and pairwise disjoint subsets of \(\mathbb{N}\). Suppose that for every pairwise disjoint sets \(A\), \(B\) and \( C\) with union \(\mathbb N\) there exists \(i\in \mathbb{N}\) such that \(A_i \subset A\), \(B_i \subset B\) and \(C_i \subset C\). Prove that there also exists a finite \(S\subset \mathbb{N}\) such that for every pairwise disjoint sets \(A\), \(B\) and \(C\) with union $\mathbb N$ there exists \(i\in S\) such that \(A_i \subset A\), \(B_i \subset B\) and \(C_i \subset C\). [i]Submitted by András Imolay, Budapest[/i]

2010 Miklós Schweitzer, 10

Tags: topology
Consider the space $ \{0,1 \} ^{N} $ with the product topology (where $\{0,1 \}$ is a discrete space). Let $ T: \{0,1 \} ^ {\mathbb {N}} \rightarrow \{0,1 \} ^ {\mathbb {N}} $ be the left-shift, ie $ (Tx) (n) = x (n+1) $ for every $ n \in \mathbb {N} $. Can a finite number of Borel sets be given: $ B_ {1}, \ldots, B_ {m} \subset \{0,1 \} ^ {N} $ such that $$ \left \{T ^ {i} \left (B_ {j} \right) \mid i \in \mathbb {N}, 1 \leq j \leq m \right \} $$the $ \sigma $-algebra generated by the set system coincides with the Borel set system?

2018 Brazil Undergrad MO, 25

Consider the $ \mathbb {Z} / (10) $ additive group automorphism group of integers module $10$, that is, $ A = \left \{\phi: \mathbb {Z} / (10) \to \mathbb {Z} / (10) | \phi-automorphism \right \}$

1996 Miklós Schweitzer, 1

Tags: topology
Let X be a $\kappa$ weighted compact $T_2$ space. Prove that for every $\omega\leq\lambda<\kappa$, X has a continuous image of a $T_2$ space of weight $\lambda$. (The weight of a space X is the smallest infinite cardinality of a base of X.)

1994 Miklós Schweitzer, 8

Tags: topology
Prove that a Hausdorff space X is countably compact iff for every open cover $\cal {U}$ there is a finite set $A \subset X$ such that $ \bigcup \{U \in {\cal U} : U \cap A \neq \emptyset \} = X$.