This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3

Kvant 2020, M365

[list=a] [*]The sum of several numbers is equal to one. Can the sum of their cubes be greater than one? [*]The same question as before, for numbers not exceeding one. [*]Can it happen that the series $a_1+a_2+\cdots$ converges, but the series $a_1^3+a_2^3+\cdots$ diverges? [/list]

1949 Putnam, B2

Answer either (i) or (ii): (i) Prove that $$\sum_{n=2}^{\infty} \frac{\cos (\log \log n)}{\log n}$$ diverges. (ii) Assume that $p>0, a>0$, and $ac-b^{2} >0,$ and show that $$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{ dx\; dy}{(p+ax^2 +2bxy+ cy^2 )^{2}}= \pi p^{-1} (ac-b^{2})^{- 1\slash 2}.$$

1998 Romania National Olympiad, 2

Let $(a_n)_{n \ge 1}$ be a sequence of real numbers satisfying the properties: [list=1] [*] the sequence $x_n=\sum\limits_{k=1}^n a_k^2$ is convergent; [*] the sequence $y_n=\sum\limits_{k=1}^n a_k$ is unbounded. [/list] Prove that the sequence $(b_n)_{n \ge 1}$ given by $b_n=\{y_n\}$ is divergent. Note: $\{ x \}$ denotes the fractional part of $x.$