This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 387

1975 Swedish Mathematical Competition, 5

Show that $n$ divides $2^n + 1$ for infinitely many positive integers $n$.

1955 Kurschak Competition, 2

How many five digit numbers are divisible by $3$ and contain the digit $6$?

1988 Tournament Of Towns, (186) 3

Prove that from any set of seven natural numbers (not necessarily consecutive) one can choose three, the sum of which is divisible by three.

1998 Rioplatense Mathematical Olympiad, Level 3, 3

Let $X$ be a finite set of positive integers. Prove that for every subset $A$ of $X$, there is a subset $B$ of $X$, with the following property: For each element $ e$ of $X$, $e$ divides an odd number of elements of $B$, if and only if $e$ is an element of $A$.

VMEO III 2006, 10.2

Prove that among $39$ consecutive natural numbers, there is always a number that has sum of its digits divisible by $ 12$. Is it true if we replace $39$ with $38$?

1999 Singapore MO Open, 2

Call a natural number $n$ a [i]magic [/i] number if the number obtained by putting $n$ on the right of any natural number is divisible by $n$. Find the number of magic numbers less than $500$. Justify your answer

Mathley 2014-15, 8

For every $n$ positive integers we denote $$\frac{x_n}{y_n}=\sum_{k=1}^{n}{\frac{1}{k {n \choose k}}}$$ where $x_n, y_n$ are coprime positive integers. Prove that $y_n$ is not divisible by $2^n$ for any positive integers $n$. Ha Duy Hung, high school specializing in the Ha University of Education, Hanoi, Xuan Thuy, Cau Giay, Hanoi

2020 Colombia National Olympiad, 4

Find all of the sequences $a_1, a_2, a_3, . . .$ of real numbers that satisfy the following property: given any sequence $b_1, b_2, b_3, . . .$ of positive integers such that for all $n \ge 1$ we have $b_n \ne b_{n+1}$ and $b_n | b_{n+1}$, then the sub-sequence $a_{b_1}, a_{b_2}, a_{b_3}, . . .$ is an arithmetic progression.

2020 Malaysia IMONST 2, 3

Given integers $a$ and $b$ such that $a^2+b^2$ is divisible by $11$. Prove that $a$ and $b$ are both divisible by $11$.

2009 Thailand Mathematical Olympiad, 10

Let $p > 5$ be a prime. Suppose that $$\frac{1}{2^2} + \frac{1}{4^2}+ \frac{1}{6^2}+ ...+ \frac{1}{(p -1)^2} =\frac{a}{b}$$ where $a/b$ is a fraction in lowest terms. Show that $p | a$.

1995 Bulgaria National Olympiad, 1

Find the number of integers $n > 1$ which divide $a^{25} - a$ for every integer $a$.

2005 Thailand Mathematical Olympiad, 12

Find the number of even integers n such that $0 \le n \le 100$ and $5 | n^2 \cdot 2^{{2n}^2}+ 1$.

2006 QEDMO 2nd, 5

For any natural number $m$, we denote by $\phi (m)$ the number of integers $k$ relatively prime to $m$ and satisfying $1 \le k \le m$. Determine all positive integers $n$ such that for every integer $k > n^2$, we have $n | \phi (nk + 1)$. (Daniel Harrer)

2008 China Northern MO, 3

Prove that: (1) There are infinitely many positive integers $n$ such that the largest prime factor of $n^2+1$ is less than $n.$ (2) There are infinitely many positive integers $n$ such that $n^2+1$ divides $n!$.

2011 Saudi Arabia Pre-TST, 4.4

Let $a, b, c, d$ be positive integers such that $a+b+c+d = 2011$. Prove that $2011$ is not a divisor of $ab - cd$.

2009 Chile National Olympiad, 4

Find a positive integer $x$, with $x> 1$ such that all numbers in the sequence $$x + 1,x^x + 1,x^{x^x}+1,...$$ are divisible by $2009.$

1999 Tournament Of Towns, 1

For what values o f $n$ is it possible to place the integers from $1$ to $n$ inclusive on a circle (not necessarily in order) so that the sum of any two successive integers in the circle is divisible by the next one in the clockwise order? (A Shapovalov)

2018 Bosnia and Herzegovina EGMO TST, 2

Prove that for every pair of positive integers $(m,n)$, bigger than $2$, there exists positive integer $k$ and numbers $a_0,a_1,...,a_k$, which are bigger than $2$, such that $a_0=m$, $a_1=n$ and for all $i=0,1,...,k-1$ holds $$ a_i+a_{i+1} \mid a_ia_{i+1}+1$$

2013 Saudi Arabia Pre-TST, 1.2

Let $x, y$ be two non-negative integers. Prove that $47$ divides $3^x - 2^y$ if and only if $23$ divides $4x + y$.

1970 Poland - Second Round, 3

Prove the theorem: There is no natural number $ n > 1 $ such that the number $ 2^n - 1 $ is divisible by $ n $.

2004 Estonia National Olympiad, 4

Prove that the number $n^n-n$ is divisible by $24$ for any odd integer $n$.

1989 Tournament Of Towns, (210) 4

Prove that if $k$ is an even positive integer then it is possible to write the integers from $1$ to $k-1$ in such an order that the sum of no set of successive numbers is divisible by $k$ .

1954 Moscow Mathematical Olympiad, 267

Prove that if $$x^4_0+ a_1x^3_0+ a_2x^2_0+ a_3x_0 + a_4 = 0 \ \ and \ \ 4x^3_0+ 3a_1x^2_0+ 2a_2x_0 + a_3 = 0,$$ then $x^4 + a_1x^3 + a_2x^2 + a_3x + a_4 $ is a mutliple of $(x - x_0)^2$.

1986 Austrian-Polish Competition, 7

Let $k$ and $n$ be integers with $0 < k < n^2/4$ such that k has no prime divisor greater than $n$. Prove that $k$ divides $n!$.

1979 Czech And Slovak Olympiad IIIA, 6

Find all natural numbers $n$, $n < 10^7$, for which: If natural number $m$, $1 < m < n$, is not divisible by $n$, then $m$ is prime.