This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 387

2007 Postal Coaching, 6

Consider all the $7$-digit numbers formed by the digits $1,2 , 3,...,7$ each digit being used exactly once in all the $7! $ numbers. Prove that no two of them have the property that one divides the other.

1985 Czech And Slovak Olympiad IIIA, 6

Prove that for every natural number $n > 1$ there exists a suquence $a_1$,$a_2$, $...$, $a_n$ of the numbers $1,2,...,n$ such that for each $k \in \{1,2,...,n-1\}$ the number $a_{k+1}$ divides $a_1+a_2+...+a_k$.

1997 All-Russian Olympiad Regional Round, 10.3

Natural numbers $m$ and $n$ are given. Prove that the number $2^n-1$ is divisible by the number $(2^m -1)^2$ if and only if the number $n$ is divisible by the number $m(2^m-1)$.

2020 Silk Road, 1

Given a strictly increasing infinite sequence of natural numbers $ a_1, $ $ a_2, $ $ a_3, $ $ \ldots $. It is known that $ a_n \leq n + 2020 $ and the number $ n ^ 3 a_n - 1 $ is divisible by $ a_ {n + 1} $ for all natural numbers $ n $. Prove that $ a_n = n $ for all natural numbers $ n $.

2002 Singapore Team Selection Test, 2

For each real number $x$, $\lfloor x \rfloor$ is the greatest integer less than or equal to $x$. For example $\lfloor 2.8 \rfloor = 2$. Let $r \ge 0$ be a real number such that for all integers $m, n, m|n$ implies $\lfloor mr \rfloor| \lfloor nr \rfloor$. Prove that $r$ is an integer.

2013 Junior Balkan Team Selection Tests - Romania, 1

Find all pairs of integers $(x,y)$ satisfying the following condition: [i]each of the numbers $x^3 + y$ and $x + y^3$ is divisible by $x^2 + y^2$ [/i] Tournament of Towns

1951 Polish MO Finals, 2

What digits should be placed instead of zeros in the third and fifth places in the number $3000003$ to obtain a number divisible by $13$?

2015 NZMOC Camp Selection Problems, 8

Determine all positive integers $n$ which have a divisor $d$ with the property that $dn + 1$ is a divisor of $d^2 + n^2$.

2019 Junior Balkan Team Selection Tests - Romania, 1

Let $n$ be a nonnegative integer and $M =\{n^3, n^3+1, n^3+2, ..., n^3+n\}$. Consider $A$ and $B$ two nonempty, disjoint subsets of $M$ such that the sum of elements of the set $A$ divides the sum of elements of the set $B$. Prove that the number of elements of the set $A$ divides the number of elements of the set $B$.

2013 Danube Mathematical Competition, 2

Let $a, b, c, n$ be four integers, where n$\ge 2$, and let $p$ be a prime dividing both $a^2+ab+b^2$ and $a^n+b^n+c^n$, but not $a+b+c$. for instance, $a \equiv b \equiv -1 (mod \,\, 3), c \equiv 1 (mod \,\, 3), n$ a positive even integer, and $p = 3$ or $a = 4, b = 7, c = -13, n = 5$, and $p = 31$ satisfy these conditions. Show that $n$ and $p - 1$ are not coprime.

2015 Balkan MO Shortlist, N2

Sequence $(a_n)_{n\geq 0}$ is defined as $a_{0}=0, a_1=1, a_2=2, a_3=6$, and $ a_{n+4}=2a_{n+3}+a_{n+2}-2a_{n+1}-a_n, n\geq 0$. Prove that $n^2$ divides $a_n$ for infinite $n$. (Romania)

1996 Singapore Team Selection Test, 3

Let $S = \{0, 1, 2, .., 1994\}$. Let $a$ and $b$ be two positive numbers in $S$ which are relatively prime. Prove that the elements of $S$ can be arranged into a sequence $s_1, s_2, s_3,... , s_{1995}$ such that $s_{i+1} - s_i \equiv \pm a$ or $\pm b$ (mod $1995$) for $i = 1, 2, ... , 1994$