This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 408

2007 Postal Coaching, 6

Consider all the $7$-digit numbers formed by the digits $1,2 , 3,...,7$ each digit being used exactly once in all the $7! $ numbers. Prove that no two of them have the property that one divides the other.

2009 Hanoi Open Mathematics Competitions, 1

Let $a,b, c$ be $3$ distinct numbers from $\{1, 2,3, 4, 5, 6\}$ Show that $7$ divides $abc + (7 - a)(7 - b)(7 - c)$

1997 All-Russian Olympiad Regional Round, 10.3

Natural numbers $m$ and $n$ are given. Prove that the number $2^n-1$ is divisible by the number $(2^m -1)^2$ if and only if the number $n$ is divisible by the number $m(2^m-1)$.

2020 Silk Road, 1

Given a strictly increasing infinite sequence of natural numbers $ a_1, $ $ a_2, $ $ a_3, $ $ \ldots $. It is known that $ a_n \leq n + 2020 $ and the number $ n ^ 3 a_n - 1 $ is divisible by $ a_ {n + 1} $ for all natural numbers $ n $. Prove that $ a_n = n $ for all natural numbers $ n $.

2002 Singapore Team Selection Test, 2

For each real number $x$, $\lfloor x \rfloor$ is the greatest integer less than or equal to $x$. For example $\lfloor 2.8 \rfloor = 2$. Let $r \ge 0$ be a real number such that for all integers $m, n, m|n$ implies $\lfloor mr \rfloor| \lfloor nr \rfloor$. Prove that $r$ is an integer.

2013 Junior Balkan Team Selection Tests - Romania, 1

Find all pairs of integers $(x,y)$ satisfying the following condition: [i]each of the numbers $x^3 + y$ and $x + y^3$ is divisible by $x^2 + y^2$ [/i] Tournament of Towns

2015 NZMOC Camp Selection Problems, 8

Determine all positive integers $n$ which have a divisor $d$ with the property that $dn + 1$ is a divisor of $d^2 + n^2$.

1996 Singapore Team Selection Test, 3

Let $S = \{0, 1, 2, .., 1994\}$. Let $a$ and $b$ be two positive numbers in $S$ which are relatively prime. Prove that the elements of $S$ can be arranged into a sequence $s_1, s_2, s_3,... , s_{1995}$ such that $s_{i+1} - s_i \equiv \pm a$ or $\pm b$ (mod $1995$) for $i = 1, 2, ... , 1994$