This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 408

2017 Hanoi Open Mathematics Competitions, 7

Let two positive integers $x, y$ satisfy the condition $44 /( x^2 + y^2)$. Determine the smallest value of $T = x^3 + y^3$.

2017 Czech-Polish-Slovak Match, 3

Let ${k}$ be a fi xed positive integer. A finite sequence of integers ${x_1,x_2, ..., x_n}$ is written on a blackboard. Pepa and Geoff are playing a game that proceeds in rounds as follows. - In each round, Pepa first partitions the sequence that is currently on the blackboard into two or more contiguous subsequences (that is, consisting of numbers appearing consecutively). However, if the number of these subsequences is larger than ${2}$, then the sum of numbers in each of them has to be divisible by ${k}$. - Then Geoff selects one of the subsequences that Pepa has formed and wipes all the other subsequences from the blackboard. The game fi nishes once there is only one number left on the board. Prove that Pepa may choose his moves so that independently of the moves of Geoff, the game fi nishes after at most ${3k}$ rounds. (Poland)

1949-56 Chisinau City MO, 7

Prove that if the product $1\cdot 2\cdot ...\cdot n$ ($n> 3$) is not divisible by $n + 1$, then $n + 1$ is prime.

2019 Romanian Master of Mathematics Shortlist, C3

Fix an odd integer $n > 1$. For a permutation $p$ of the set $\{1,2,...,n\}$, let S be the number of pairs of indices $(i, j)$, $1 \le i \le j \le n$, for which $p_i +p_{i+1} +...+p_j$ is divisible by $n$. Determine the maximum possible value of $S$. Croatia

1946 Moscow Mathematical Olympiad, 113

Prove that $n^2 + 3n + 5$ is not divisible by $121$ for any positive integer $n$.

2018 Estonia Team Selection Test, 12

We call the polynomial $P (x)$ simple if the coefficient of each of its members belongs to the set $\{-1, 0, 1\}$. Let $n$ be a positive integer, $n> 1$. Find the smallest possible number of terms with a non-zero coefficient in a simple $n$-th degree polynomial with all values at integer places are divisible by $n$.

2014 Czech-Polish-Slovak Junior Match, 4

The number $a_n$ is formed by writing in succession, without spaces, the numbers $1, 2, ..., n$ (for example, $a_{11} = 1234567891011$). Find the smallest number t such that $11 | a_t$.

1989 Tournament Of Towns, (215) 3

Find six distinct positive integers such that the product of any two of them is divisible by their sum. (D. Fomin, Leningrad)

2008 Thailand Mathematical Olympiad, 4

Let $n$ be a positive integer. Show that $${2n+1 \choose 1} -{2n+1 \choose 3}2008 + {2n+1 \choose 5}2008^2- ...+(-1)^{n}{2n+1 \choose 2n+1}2008^n $$ is not divisible by $19$.

2012 Mathcenter Contest + Longlist, 3

If $p,p^2+2$ are both primes, how many divisors does $p^5+2p^2$ have? [i](Zhuge Liang)[/i]

1996 Estonia National Olympiad, 4

Prove that, for each odd integer $n \ge 5$, the number $1^n+2^n+...+15^n$ is divisible by $480$.

2013 Saudi Arabia Pre-TST, 3.2

Let $a_1, a_2,..., a_9$ be integers. Prove that if $19$ divides $a_1^9+a_2^9+...+a_9^9$ then $19$ divides the product $a_1a_2...a_9$.

2021 Saudi Arabia Training Tests, 39

Determine if there exists pairwise distinct positive integers $a_1$, $a_2$,$ ...$, $a_{101}$, $b_1$, $b_2$,$ ...$, $b_{101}$ satisfying the following property: for each non-empty subset $S$ of $\{1, 2, ..., 101\}$ the sum $\sum_{i \in S} a_i$ divides $100! + \sum_{i \in S} b_i$.

2007 QEDMO 4th, 4

Prove that there is no positive integer $n>1$ such that $n\mid2^{n} -1.$

2011 Belarus Team Selection Test, 1

Is it possible to arrange the numbers $1,2,...,2011$ over the circle in some order so that among any $25$ successive numbers at least $8$ numbers are multiplies of $5$ or $7$ (or both $5$ and $7$) ? I. Gorodnin

2002 Junior Balkan Team Selection Tests - Romania, 1

Let $n$ be an even positive integer and let $a, b$ be two relatively prime positive integers. Find $a$ and $b$ such that $a + b$ is a divisor of $a^n + b^n$.

2025 Romania EGMO TST, P2

Let $m$ and $n$ be positive integers with $m > n \ge 2$. Set $S =\{1,2,...,m\}$, and set $T = \{a_1,a_2,...,a_n\}$ is a subset of $S$ such that every element of $S$ is not divisible by any pair of distinct elements of $T$. Prove that $$\frac{1}{a_1}+\frac{1}{a_2}+ ...+ \frac{1}{a_n} < \frac{m+n}{m}$$

2013 Saudi Arabia GMO TST, 3

Find the largest integer $k$ such that $k$ divides $n^{55} - n$ for all integer $n$.

1975 Polish MO Finals, 4

All decimal digits of some natural number are $1,3,7$, and $9$. Prove that one can rearrange its digits so as to obtain a number divisible by $7$.

2013 Saudi Arabia Pre-TST, 4.2

Let $x, y$ be two integers. Prove that if $2013$ divides $x^{1433} + y^{1433}$ then $2013$ divides $x^7 + y^7$.

2019 Lusophon Mathematical Olympiad, 1

Find a way to write all the digits of $1$ to $9$ in a sequence and without repetition, so that the numbers determined by any two consecutive digits of the sequence are divisible by $7$ or $13$.

1983 Tournament Of Towns, (038) A5

Prove that in any set of $17$ distinct natural numbers one can either find five numbers so that four of them are divisible into the other or five numbers none of which is divisible into any other. (An established theorem)

2017 Bundeswettbewerb Mathematik, 1

The numbers $1,2,3,\dots,2017$ are on the blackboard. Amelie and Boris take turns removing one of those until only two numbers remain on the board. Amelie starts. If the sum of the last two numbers is divisible by $8$, then Amelie wins. Else Boris wins. Who can force a victory?

1956 Polish MO Finals, 4

Prove that if the natural numbers $ a $, $ b $, $ c $ satisfy the equation $$ a^2 + b^2 = c^2,$$ then: 1) at least one of the numbers $ a $ and $ b $ is divisible by $ 3 $, 2) at least one of the numbers $ a $ and $ b $ is divisible by $ 4 $, 3) at least one of the numbers $ a $, $ b $, $ c $ is divisible by $ 5 $.

2006 Singapore Senior Math Olympiad, 1

Let $a, d$ be integers such that $a,a + d, a+ 2d$ are all prime numbers larger than $3$. Prove that $d$ is a multiple of $6$.