This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 310

2021 Czech and Slovak Olympiad III A, 4

Find all natural numbers $n$ for which equality holds $n + d (n) + d (d (n)) +... = 2021$, where $d (0) = d (1) = 0$ and for $k> 1$, $ d (k)$ is the [i]superdivisor [/i] of the number $k$ (i.e. its largest divisor of $d$ with property $d <k$). (Tomáš Bárta)

1986 IMO Shortlist, 6

Find four positive integers each not exceeding $70000$ and each having more than $100$ divisors.

2022 Dutch Mathematical Olympiad, 1

A positive integer n is called [i]primary divisor [/i] if for every positive divisor $d$ of $n$ at least one of the numbers $d - 1$ and $d + 1$ is prime. For example, $8$ is divisor primary, because its positive divisors $1$, $2$, $4$, and $8$ each differ by $1$ from a prime number ($2$, $3$, $5$, and $7$, respectively), while $9$ is not divisor primary, because the divisor $9$ does not differ by $1$ from a prime number (both $8$ and $10$ are composite). Determine the largest primary divisor number.

2022 Durer Math Competition Finals, 16

The number $60$ is written on a blackboard. In every move, Andris wipes the numbers on the board one by one, and writes all its divisors in its place (including itself). After $10$ such moves, how many times will $1$ appear on the board?

1983 IMO Longlists, 4

Let $n$ be a positive integer. Let $\sigma(n)$ be the sum of the natural divisors $d$ of $n$ (including $1$ and $n$). We say that an integer $m \geq 1$ is [i]superabundant[/i] (P.Erdos, $1944$) if $\forall k \in \{1, 2, \dots , m - 1 \}$, $\frac{\sigma(m)}{m} >\frac{\sigma(k)}{k}.$ Prove that there exists an infinity of [i]superabundant[/i] numbers.

2024 Baltic Way, 16

Determine all composite positive integers $n$ such that, for each positive divisor $d$ of $n$, there are integers $k\geq 0$ and $m\geq 2$ such that $d=k^m+1$.

2003 BAMO, 1

An integer is a perfect number if and only if it is equal to the sum of all of its divisors except itself. For example, $28$ is a perfect number since $28 = 1 + 2 + 4 + 7 + 14$. Let $n!$ denote the product $1\cdot 2\cdot 3\cdot ...\cdot n$, where $n$ is a positive integer. An integer is a factorial if and only if it is equal to $n!$ for some positive integer $n$. For example, $24$ is a factorial number since $24 = 4! = 1\cdot 2\cdot 3\cdot 4$. Find all perfect numbers greater than $1$ that are also factorials.

2015 NZMOC Camp Selection Problems, 8

Determine all positive integers $n$ which have a divisor $d$ with the property that $dn + 1$ is a divisor of $d^2 + n^2$.

2023 ISL, N1

Determine all composite integers $n>1$ that satisfy the following property: if $d_1$, $d_2$, $\ldots$, $d_k$ are all the positive divisors of $n$ with $1 = d_1 < d_2 < \cdots < d_k = n$, then $d_i$ divides $d_{i+1} + d_{i+2}$ for every $1 \leq i \leq k - 2$.

2022 European Mathematical Cup, 1

Determine all positive integers $n$ for which there exist positive divisors $a$, $b$, $c$ of $n$ such that $a>b>c$ and $a^2 - b^2$, $b^2 - c^2$, $a^2 - c^2$ are also divisors of $n$.