This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 11

1990 Czech and Slovak Olympiad III A, 5

In a country every two towns are connected by exactly one one-way road. Each road is intended either for cars or for cyclists. The roads cross only in towns, otherwise interchanges are used as road junctions. Show that there is a town from which you can go to any other town without changing the means of transport.

2025 Bulgarian Spring Mathematical Competition, 10.4

Initially $A$ selects a graph with \( 2221 \) vertices such that each vertex is incident to at least one edge. Then $B$ deletes some of the edges (possibly none) from the chosen graph. Finally, $A$ pays $B$ one lev for each vertex that is incident to an odd number of edges. What is the maximum amount that $B$ can guarantee to earn?

Russian TST 2019, P2

Two ants are moving along the edges of a convex polyhedron. The route of every ant ends in its starting point, so that one ant does not pass through the same point twice along its way. On every face $F$ of the polyhedron are written the number of edges of $F$ belonging to the route of the first ant and the number of edges of $F$ belonging to the route of the second ant. Is there a polyhedron and a pair of routes described as above, such that only one face contains a pair of distinct numbers? [i]Proposed by Nikolai Beluhov[/i]

2019 Romanian Master of Mathematics Shortlist, original P5

Two ants are moving along the edges of a convex polyhedron. The route of every ant ends in its starting point, so that one ant does not pass through the same point twice along its way. On every face $F$ of the polyhedron are written the number of edges of $F$ belonging to the route of the first ant and the number of edges of $F$ belonging to the route of the second ant. Is there a polyhedron and a pair of routes described as above, such that only one face contains a pair of distinct numbers? [i]Proposed by Nikolai Beluhov[/i]

1990 All Soviet Union Mathematical Olympiad, 513

A graph has $30$ points and each point has $6$ edges. Find the total number of triples such that each pair of points is joined or each pair of points is not joined.

Kvant 2019, M2573

Two ants are moving along the edges of a convex polyhedron. The route of every ant ends in its starting point, so that one ant does not pass through the same point twice along its way. On every face $F$ of the polyhedron are written the number of edges of $F$ belonging to the route of the first ant and the number of edges of $F$ belonging to the route of the second ant. Is there a polyhedron and a pair of routes described as above, such that only one face contains a pair of distinct numbers? [i]Proposed by Nikolai Beluhov[/i]

2018 Saudi Arabia GMO TST, 4

In a graph with $8$ vertices that contains no cycle of length $4$, at most how many edges can there be?

2011 Danube Mathematical Competition, 4

Given a positive integer number $n$, determine the maximum number of edges a triangle-free Hamiltonian simple graph on $n$ vertices may have.

1998 ITAMO, 2

Prove that in each polyhedron there exist two faces with the same number of edges.

1975 Bundeswettbewerb Mathematik, 2

Prove that in each polyhedron there exist two faces with the same number of edges.

1992 All Soviet Union Mathematical Olympiad, 573

A graph has $17$ points and each point has $4$ edges. Show that there are two points which are not joined and which are not both joined to the same point.