This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2022 Bundeswettbewerb Mathematik, 4

Some points in the plane are either colored red or blue. The distance between two points of the opposite color is at most 1. Prove that there exists a circle with diameter $\sqrt{2}$ such that no two points outside of this circle have same color. It is enough to prove this claim for a finite number of colored points.