This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 451

2023 Turkey Team Selection Test, 3

For all $n>1$, let $f(n)$ be the biggest divisor of $n$ except itself. Does there exists a positive integer $k$ such that the equality $n-f(n)=k$ has exactly $2023$ solutions?

1988 Bundeswettbewerb Mathematik, 4

Provided the equation $xyz = p^n(x + y + z)$ where $p \geq 3$ is a prime and $n \in \mathbb{N}$. Prove that the equation has at least $3n + 3$ different solutions $(x,y,z)$ with natural numbers $x,y,z$ and $x < y < z$. Prove the same for $p > 3$ being an odd integer.

2003 Gheorghe Vranceanu, 1

Solve in $ \mathbb{R}^2 $ the equation $ \lfloor x/y-y/x \rfloor =x^2/y+y/x^2. $

2000 Denmark MO - Mohr Contest, 5

Determine all possible values of $x+\frac{1}{x}$ , where the real number $x$ satisfies the equation $$x^4+5x^3-4x^2+5x+1=0$$ and solve this equation.

2001 IMO Shortlist, 5

Find all positive integers $a_1, a_2, \ldots, a_n$ such that \[ \frac{99}{100} = \frac{a_0}{a_1} + \frac{a_1}{a_2} + \cdots + \frac{a_{n-1}}{a_n}, \] where $a_0 = 1$ and $(a_{k+1}-1)a_{k-1} \geq a_k^2(a_k - 1)$ for $k = 1,2,\ldots,n-1$.

1991 Denmark MO - Mohr Contest, 4

Tags: algebra , equation
Let $a, b, c$ and $d$ be arbitrary real numbers. Prove that if $$a^2+b^2+c^2+d^2=ab+bc+cd+da,$$ then $a=b=c=d$.

2016 District Olympiad, 1

Solve in the interval $ (2,\infty ) $ the following equation: $$ 1=\cos\left( \pi\log_3 (x+6)\right)\cdot\cos\left( \pi\log_3 (x-2)\right) . $$

1978 Germany Team Selection Test, 3

Let $n$ be an integer greater than $1$. Define \[x_1 = n, y_1 = 1, x_{i+1} =\left[ \frac{x_i+y_i}{2}\right] , y_{i+1} = \left[ \frac{n}{x_{i+1}}\right], \qquad \text{for }i = 1, 2, \ldots\ ,\] where $[z]$ denotes the largest integer less than or equal to $z$. Prove that \[ \min \{x_1, x_2, \ldots, x_n \} =[ \sqrt n ]\]

2004 Germany Team Selection Test, 4

Let the positive integers $x_1$, $x_2$, $...$, $x_{100}$ satisfy the equation \[\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}+...+\frac{1}{\sqrt{x_{100}}}=20.\] Show that at least two of these integers are equal to each other.

1992 Nordic, 1

Tags: equation , algebra
Determine all real numbers $x > 1, y > 1$, and $z > 1$,satisfying the equation $x+y+z+\frac{3}{x-1}+\frac{3}{y-1}+\frac{3}{z-1}=2(\sqrt{x+2}+\sqrt{y+2}+\sqrt{z+2})$

2011 Laurențiu Duican, 1

Solve in the real numbers the equation $ 2^{1+x} =2^{[x]} +2^{\{x\}} , $ where $ [],\{\} $ deonotes the ineger and fractional part, respectively. [i]Aurel Bârsan[/i]

2019 Romania National Olympiad, 3

Prove that the number of solutions in $ \left( \mathbb{N}\cup\{ 0 \} \right)\times \left( \mathbb{N}\cup\{ 0 \} \right)\times \left( \mathbb{N}\cup\{ 0 \} \right) $ of the parametric equation $$ \sqrt{x^2+y+n}+\sqrt{y^2+x+n} = z, $$ is greater than zero and finite, for nay natural number $ n. $

2007 Nicolae Coculescu, 2

Solve in the real numbers the equation $ \cos \left( \pi\log_3 (x+6) \right)\cdot \cos \left( \pi \log_3 (x-2) \right) =1. $

1987 All Soviet Union Mathematical Olympiad, 460

The plot of the $y=f(x)$ function, being rotated by the (right) angle around the $(0,0)$ point is not changed. a) Prove that the equation $f(x)=x$ has the unique solution. b) Give an example of such a function.

2016 India PRMO, 2

Find the number of integer solutions of the equation $x^{2016} + (2016! + 1!) x^{2015} + (2015! + 2!) x^{2014} + ... + (1! + 2016!) = 0$

2017 Baltic Way, 4

A linear form in $k$ variables is an expression of the form $P(x_1,...,x_k)=a_1x_1+...+a_kx_k$ with real constants $a_1,...,a_k$. Prove that there exist a positive integer $n$ and linear forms $P_1,...,P_n$ in $2017$ variables such that the equation $$x_1\cdot x_2\cdot ... \cdot x_{2017}=P_1(x_1,...,x_{2017})^{2017}+...+P_n(x_1,...,x_{2017})^{2017}$$ holds for all real numbers $x_1,...,x_{2017}$.

2011 Brazil Team Selection Test, 2

Find the least positive integer $n$ for which there exists a set $\{s_1, s_2, \ldots , s_n\}$ consisting of $n$ distinct positive integers such that \[ \left( 1 - \frac{1}{s_1} \right) \left( 1 - \frac{1}{s_2} \right) \cdots \left( 1 - \frac{1}{s_n} \right) = \frac{51}{2010}.\] [i]Proposed by Daniel Brown, Canada[/i]

1987 ITAMO, 4

Tags: algebra , equation , set
Given $I_0 = \{-1,1\}$, define $I_n$ recurrently as the set of solutions $x$ of the equations $x^2 -2xy+y^2- 4^n = 0$, where $y$ ranges over all elements of $I_{n-1}$. Determine the union of the sets $I_n$ over all nonnegative integers $n$.

2004 Germany Team Selection Test, 4

Let the positive integers $x_1$, $x_2$, $...$, $x_{100}$ satisfy the equation \[\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}+...+\frac{1}{\sqrt{x_{100}}}=20.\] Show that at least two of these integers are equal to each other.

2009 Brazil Team Selection Test, 1

Let $n$ be a positive integer and let $p$ be a prime number. Prove that if $a$, $b$, $c$ are integers (not necessarily positive) satisfying the equations \[ a^n + pb = b^n + pc = c^n + pa\] then $a = b = c$. [i]Proposed by Angelo Di Pasquale, Australia[/i]

2011 Croatia Team Selection Test, 4

Find all pairs of integers $x,y$ for which \[x^3+x^2+x=y^2+y.\]

1949-56 Chisinau City MO, 55

Tags: algebra , equation
Find the real roots of the equation $$(5-x)^4+ (x-2)^ 4 = 17$$ and the real roots of a more general equation $$(a - x) ^4+ (x - b)^4 = c$$

1985 All Soviet Union Mathematical Olympiad, 414

Solve the equation ("$2$" encounters $1985$ times): $$\dfrac{x}{2+ \dfrac{x}{2+\dfrac{x}{2+... \dfrac{x}{2+\sqrt {1+x}}}}}=1$$

1974 Czech and Slovak Olympiad III A, 3

Let $m\ge10$ be any positive integer such that all its decimal digits are distinct. Denote $f(m)$ sum of positive integers created by all non-identical permutations of digits of $m,$ e.g. \[f(302)=320+023+032+230+203=808.\] Determine all positive integers $x$ such that \[f(x)=138\,012.\]

2009 Germany Team Selection Test, 1

Let $n$ be a positive integer and let $p$ be a prime number. Prove that if $a$, $b$, $c$ are integers (not necessarily positive) satisfying the equations \[ a^n + pb = b^n + pc = c^n + pa\] then $a = b = c$. [i]Proposed by Angelo Di Pasquale, Australia[/i]