Found problems: 178
2012 AMC 10, 18
Suppose that one of every $500$ people in a certain population has a particular disease, which displays no symptoms. A blood test is available for screening for this disease. For a person who has this disease, the test always turns out positive. For a person who does not have the disease, however, there is a $2\%$ false positive rate; in other words, for such people, $98\%$ of the time the test will turn out negative, but $2\%$ of the time the test will turn out positive and will incorrectly indicate that the person has the disease. Let $p$ be the probability that a person who is chosen at random from the population and gets a positive test result actually has the disease. Which of the following is closest to $p$?
$ \textbf{(A)}\ \frac{1}{98}\qquad\textbf{(B)}\ \frac{1}{9}\qquad\textbf{(C)}\ \frac{1}{11}\qquad\textbf{(D)}\ \frac{49}{99}\qquad\textbf{(E)}\ \frac{98}{99}$
2007 India IMO Training Camp, 3
Let $\mathbb X$ be the set of all bijective functions from the set $S=\{1,2,\cdots, n\}$ to itself. For each $f\in \mathbb X,$ define
\[T_f(j)=\left\{\begin{aligned} 1, \ \ \ & \text{if} \ \ f^{(12)}(j)=j,\\ 0, \ \ \ & \text{otherwise}\end{aligned}\right.\]
Determine $\sum_{f\in\mathbb X}\sum_{j=1}^nT_{f}(j).$
(Here $f^{(k)}(x)=f(f^{(k-1)}(x))$ for all $k\geq 2.$)
2007 District Olympiad, 2
Let $f : \left[ 0, 1 \right] \to \mathbb R$ be a continuous function and $g : \left[ 0, 1 \right] \to \left( 0, \infty \right)$.
Prove that if $f$ is increasing, then
\[\int_{0}^{t}f(x) g(x) \, dx \cdot \int_{0}^{1}g(x) \, dx \leq \int_{0}^{t}g(x) \, dx \cdot \int_{0}^{1}f(x) g(x) \, dx .\]
2004 Putnam, A5
An $m\times n$ checkerboard is colored randomly: each square is independently assigned red or black with probability $\frac12.$ we say that two squares, $p$ and $q$, are in the same connected monochromatic region if there is a sequence of squares, all of the same color, starting at $p$ and ending at $q,$ in which successive squares in the sequence share a common side. Show that the expected number of connected monochromatic regions is greater than $\frac{mn}8.$
2014 Harvard-MIT Mathematics Tournament, 29
Natalie has a copy of the unit interval $[0,1]$ that is colored white. She also has a black marker, and she colors the interval in the following manner: at each step, she selects a value $x\in [0,1]$ uniformly at random, and
(a) If $x\leq\tfrac12$ she colors the interval $[x,x+\tfrac12]$ with her marker.
(b) If $x>\tfrac12$ she colors the intervals $[x,1]$ and $[0,x-\tfrac12]$ with her marker.
What is the expected value of the number of steps Natalie will need to color the entire interval black?
2003 Kurschak Competition, 3
Prove that the following inequality holds with the exception of finitely many positive integers $n$:
\[\sum_{i=1}^n\sum_{j=1}^n gcd(i,j)>4n^2.\]
2013 Stanford Mathematics Tournament, 5
An unfair coin lands heads with probability $\tfrac1{17}$ and tails with probability $\tfrac{16}{17}$. Matt flips the coin repeatedly until he flips at least one head and at least one tail. What is the expected number of times that Matt flips the coin?
2007 India IMO Training Camp, 2
Let $ S$ be a finite set of points in the plane such that no three of them are on a line. For each convex polygon $ P$ whose vertices are in $ S$, let $ a(P)$ be the number of vertices of $ P$, and let $ b(P)$ be the number of points of $ S$ which are outside $ P$. A line segment, a point, and the empty set are considered as convex polygons of $ 2$, $ 1$, and $ 0$ vertices respectively. Prove that for every real number $ x$ \[\sum_{P}{x^{a(P)}(1 \minus{} x)^{b(P)}} \equal{} 1,\] where the sum is taken over all convex polygons with vertices in $ S$.
[i]Alternative formulation[/i]:
Let $ M$ be a finite point set in the plane and no three points are collinear. A subset $ A$ of $ M$ will be called round if its elements is the set of vertices of a convex $ A \minus{}$gon $ V(A).$ For each round subset let $ r(A)$ be the number of points from $ M$ which are exterior from the convex $ A \minus{}$gon $ V(A).$ Subsets with $ 0,1$ and 2 elements are always round, its corresponding polygons are the empty set, a point or a segment, respectively (for which all other points that are not vertices of the polygon are exterior). For each round subset $ A$ of $ M$ construct the polynomial
\[ P_A(x) \equal{} x^{|A|}(1 \minus{} x)^{r(A)}.
\]
Show that the sum of polynomials for all round subsets is exactly the polynomial $ P(x) \equal{} 1.$
[i]Proposed by Federico Ardila, Colombia[/i]
STEMS 2022 Math Cat A Qualifier Round, 1
We have $2022$ $1s$ written on a board in a line. We randomly choose a strictly increasing sequence from ${1, 2, . . . , 2022}$ such that the last term is $2022$. If the chosen sequence is $a_1, a_2, ..., a_k$ ($k$ is not fixed), then at the $i^{th}$ step, we choose the first a$_i$ numbers on the line and change the 1s to 0s and 0s to 1s. After $k$ steps are over, we calculate the sum of the numbers on the board, say $S$. The expected value of $S$ is $\frac{a}{b}$ where $a, b$ are relatively prime positive integers. Find $a + b.$
1989 Polish MO Finals, 1
$n, k$ are positive integers. $A_0$ is the set $\{1, 2, ... , n\}$. $A_i$ is a randomly chosen subset of $A_{i-1}$ (with each subset having equal probability). Show that the expected number of elements of $A_k$ is $\dfrac{n}{2^k}$
2009 Harvard-MIT Mathematics Tournament, 7
Paul fills in a $7\times7$ grid with the numbers $1$ through $49$ in a random arrangement. He then erases his work and does the same thing again, to obtain two different random arrangements of the numbers in the grid. What is the expected number of pairs of numbers that occur in either the same row as each other or the same column as each other in both of the two arrangements?
2012 Math Prize For Girls Problems, 18
Sherry starts at the number 1. Whenever she's at 1, she moves one step up (to 2). Whenever she's at a number strictly between 1 and 10, she moves one step up or one step down, each with probability $\frac{1}{2}$. When she reaches 10, she stops. What is the expected number (average number) of steps that Sherry will take?
2013 Stanford Mathematics Tournament, 20
Ben is throwing darts at a circular target with diameter 10. Ben never misses the target when he throws a dart, but he is equally likely to hit any point on the target. Ben gets $\lceil 5-x \rceil$ points for having the dart land $x$ units away from the center of the target. What is the expected number of points that Ben can earn from throwing a single dart? (Note that $\lceil y \rceil$ denotes the smallest integer greater than or equal to $y$.)
1975 USAMO, 5
A deck of $ n$ playing cards, which contains three aces, is shuffled at random (it is assumed that all possible card distributions are equally likely). The cards are then turned up one by one from the top until the second ace appears. Prove that the expected (average) number of cards to be turned up is $ (n\plus{}1)/2$.
2010 Princeton University Math Competition, 6
A regular pentagon is drawn in the plane, along with all its diagonals. All its sides and diagonals are extended infinitely in both directions, dividing the plane into regions, some of which are unbounded. An ant starts in the center of the pentagon, and every second, the ant randomly chooses one of the edges of the region it's in, with an equal probability of choosing each edge, and crosses that edge into another region. If the ant enters an unbounded region, it explodes. After first leaving the central region of the pentagon, let $x$ be the expected number of times the ant re-enters the central region before it explodes. Find the closest integer to $100x$.
2009 Math Prize For Girls Problems, 12
Jenny places 100 pennies on a table, 30 showing heads and 70 showing tails. She chooses 40 of the pennies at random (all different) and turns them over. That is, if a chosen penny was showing heads, she turns it to show tails; if a chosen penny was showing tails, she turns it to show heads. At the end, what is the expected number of pennies showing heads?
2021-2022 OMMC, 8
Isaac repeatedly flips a fair coin. Whenever a particular face appears for the $2n+1$th time, for any nonnegative integer $n$, he earns a point. The expected number of flips it takes for Isaac to get $10$ points is $\tfrac ab$ for coprime positive integers $a$ and $b$. Find $a + b$.
[i]Proposed by Isaac Chen[/i]
1970 Putnam, A6
Three numbers are chosen independently at random, one from each of the three intervals $[0, L_i ]$ ($i=1,2,3$). If the distribution of each random number is uniform with respect to the length of the interval it is chosen from, determine the expected value of the smallest number chosen.
2005 USAMTS Problems, 3
We play a game. The pot starts at $\$0$. On every turn, you flip a fair coin. If you flip heads, I add $\$100$ to the pot. If you flip tails, I take all of the money out of the pot, and you are assessed a "strike". You can stop the game before any flip and collect the contents of the pot, but if you get 3 strikes, the game is over and you win nothing. Find, with proof, the expected value of your winnings if you follow an optimal strategy.
2010 ELMO Shortlist, 1
For a permutation $\pi$ of $\{1,2,3,\ldots,n\}$, let $\text{Inv}(\pi)$ be the number of pairs $(i,j)$ with $1 \leq i < j \leq n$ and $\pi(i) > \pi(j)$.
[list=1]
[*] Given $n$, what is $\sum \text{Inv}(\pi)$ where the sum ranges over all permutations $\pi$ of $\{1,2,3,\ldots,n\}$?
[*] Given $n$, what is $\sum \left(\text{Inv}(\pi)\right)^2$ where the sum ranges over all permutations $\pi$ of $\{1,2,3,\ldots,n\}$?[/list]
[i]Brian Hamrick.[/i]
2014 NIMO Problems, 6
Suppose we wish to pick a random integer between $1$ and $N$ inclusive by flipping a fair coin. One way we can do this is through generating a random binary decimal between $0$ and $1$, then multiplying the result by $N$ and taking the ceiling. However, this would take an infinite amount of time. We therefore stopping the flipping process after we have enough flips to determine the ceiling of the number. For instance, if $N=3$, we could conclude that the number is $2$ after flipping $.011_2$, but $.010_2$ is inconclusive.
Suppose $N=2014$. The expected number of flips for such a process is $\frac{m}{n}$ where $m$, $n$ are relatively prime positive integers, find $100m+n$.
[i]Proposed by Lewis Chen[/i]
2014 Harvard-MIT Mathematics Tournament, 23
Let $S=\{-100,-99,-98,\ldots,99,100\}$. Choose a $50$-element subset $T$ of $S$ at random. Find the expected number of elements of the set $\{|x|:x\in T\}$.
2023 Simon Marais Mathematical Competition, B2
There are $256$ players in a tennis tournament who are ranked from $1$ to $256$, with $1$ corresponding to the highest rank and $256$ corresponding to the lowest rank. When two players play a match in the tournament, the player whose rank is higher wins the match with probability $\frac{3}{5}$.
In each round of the tournament, the player with the highest rank plays against the player with the second highest rank, the player with the third highest rank plays against the player with the fourth highest rank, and so on. At the end of the round, the players who win proceed to the next round and the players who lose exit the tournament. After eight rounds, there is one player remaining and they are declared the winner.
Determine the expected value of the rank of the winner.
2023 SG Originals, Q5
A clock has an hour, minute, and second hand, all of length $1$. Let $T$ be the triangle formed by the ends of these hands. A time of day is chosen uniformly at random. What is the expected value of the area of $T$?
[i]Proposed by Dylan Toh[/i]
2014 Online Math Open Problems, 27
A frog starts at $0$ on a number line and plays a game. On each turn the frog chooses at random to jump $1$ or $2$ integers to the right or left. It stops moving if it lands on a nonpositive number or a number on which it has already landed. If the expected number of times it will jump is $\tfrac{p}{q}$ for relatively prime positive integers $p$ and $q$, find $p+q$.
[i]Proposed by Michael Kural[/i]