Found problems: 178
2023 AIME, 6
Alice knows that $3$ red cards and $3$ black cards will be revealed to her one at a time in random order. Before each card is revealed, Alice must guess its color. If Alice plays optimally, the expected number of cards she will guess correctly is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
2000 Harvard-MIT Mathematics Tournament, 7
Suppose you are given a fair coin and a sheet of paper with the polynomial $x^m$ written on it. Now for each toss of the coin, if heads show up, you must erase the polynomial $x^r$ (where $r$ is going to change with time - initially it is $m$) written on the paper and replace it with $x^{r-1}$. If tails show up, replace it with $x^{r+1}$. What is the expected value of the polynomial I get after $m$ such tosses? (Note: this is a different concept from the most probable value)
2021-IMOC, C5
A drunken person walks randomly on a tree. Each time, he chooses uniformly at random a neighbouring node and walks there. Show that wherever his starting point and goal are, the expected number of steps the person takes to reach the goal is always an integer.
[i]houkai[/i]
2022 IMC, 8
Let $n, k \geq 3$ be integers, and let $S$ be a circle. Let $n$ blue points and $k$ red points be
chosen uniformly and independently at random on the circle $S$. Denote by $F$ the intersection of the
convex hull of the red points and the convex hull of the blue points. Let $m$ be the number of vertices
of the convex polygon $F$ (in particular, $m=0$ when $F$ is empty). Find the expected value of $m$.
2018 PUMaC Team Round, 1
Let $T=\{a_1,a_2,\dots,a_{1000}\}$, where $a_1<a_2<\dots<a_{1000}$, be a uniformly randomly selected subset of $\{1,2,\dots,2018\}$ with cardinality $1000$. The expected value of $a_7$ can be written in reduced form as $\tfrac{m}{n}$. Find $m+n$.
2015 NIMO Summer Contest, 9
On a blackboard lies $50$ magnets in a line numbered from $1$ to $50$, with different magnets containing different numbers. David walks up to the blackboard and rearranges the magnets into some arbitrary order. He then writes underneath each pair of consecutive magnets the positive difference between the numbers on the magnets. If the expected number of times he writes the number $1$ can be written in the form $\tfrac mn$ for relatively prime positive integers $m$ and $n$, compute $100m+n$.
[i] Proposed by David Altizio [/i]
2007 Germany Team Selection Test, 2
Let $ S$ be a finite set of points in the plane such that no three of them are on a line. For each convex polygon $ P$ whose vertices are in $ S$, let $ a(P)$ be the number of vertices of $ P$, and let $ b(P)$ be the number of points of $ S$ which are outside $ P$. A line segment, a point, and the empty set are considered as convex polygons of $ 2$, $ 1$, and $ 0$ vertices respectively. Prove that for every real number $ x$ \[\sum_{P}{x^{a(P)}(1 \minus{} x)^{b(P)}} \equal{} 1,\] where the sum is taken over all convex polygons with vertices in $ S$.
[i]Alternative formulation[/i]:
Let $ M$ be a finite point set in the plane and no three points are collinear. A subset $ A$ of $ M$ will be called round if its elements is the set of vertices of a convex $ A \minus{}$gon $ V(A).$ For each round subset let $ r(A)$ be the number of points from $ M$ which are exterior from the convex $ A \minus{}$gon $ V(A).$ Subsets with $ 0,1$ and 2 elements are always round, its corresponding polygons are the empty set, a point or a segment, respectively (for which all other points that are not vertices of the polygon are exterior). For each round subset $ A$ of $ M$ construct the polynomial
\[ P_A(x) \equal{} x^{|A|}(1 \minus{} x)^{r(A)}.
\]
Show that the sum of polynomials for all round subsets is exactly the polynomial $ P(x) \equal{} 1.$
[i]Proposed by Federico Ardila, Colombia[/i]
2018 PUMaC Combinatorics B, 6
If $a$ and $b$ are selected uniformly from $\{0,1,\ldots,511\}$ without replacement, the expected number of $1$'s in the binary representation of $a+b$ can be written in simplest from as $\tfrac{m}{n}$. Compute $m+n$.
2007 ITest, 19
One day Jason finishes his math homework early, and decides to take a jog through his neighborhood. While jogging, Jason trips over a leprechaun. After dusting himself off and apologizing to the odd little magical creature, Jason, thinking there is nothing unusual about the situation, starts jogging again. Immediately the leprechaun calls out, "hey, stupid, this is your only chance to win gold from a leprechaun!"
Jason, while not particularly greedy, recognizes the value of gold. Thinking about his limited college savings, Jason approaches the leprechaun and asks about the opportunity. The leprechaun hands Jason a fair coin and tells him to flip it as many times as it takes to flip a head. For each tail Jason flips, the leprechaun promises one gold coin.
If Jason flips a head right away, he wins nothing. If he first flips a tail, then a head, he wins one gold coin. If he's lucky and flips ten tails before the first head, he wins $\textit{ten gold coins.}$ What is the expected number of gold coins Jason wins at this game?
$\textbf{(A) }0\hspace{14em}\textbf{(B) }\dfrac1{10}\hspace{13.5em}\textbf{(C) }\dfrac18$
$\textbf{(D) }\dfrac15\hspace{13.8em}\textbf{(E) }\dfrac14\hspace{14em}\textbf{(F) }\dfrac13$
$\textbf{(G) }\dfrac25\hspace{13.7em}\textbf{(H) }\dfrac12\hspace{14em}\textbf{(I) }\dfrac35$
$\textbf{(J) }\dfrac23\hspace{14em}\textbf{(K) }\dfrac45\hspace{14em}\textbf{(L) }1$
$\textbf{(M) }\dfrac54\hspace{13.5em}\textbf{(N) }\dfrac43\hspace{14em}\textbf{(O) }\dfrac32$
$\textbf{(P) }2\hspace{14.1em}\textbf{(Q) }3\hspace{14.2em}\textbf{(R) }4$
$\textbf{(S) }2007$
2016 PUMaC Combinatorics B, 7
Let $a_1,a_2,a_3,\ldots$ be an infinite sequence where for all positive integers $i$, $a_i$ is chosen to be a random positive integer between $1$ and $2016$, inclusive. Let $S$ be the set of all positive integers $k$ such that for all positive integers $j<k$, $a_j\neq a_k$. (So $1\in S$; $2\in S$ if and only if $a_1\neq a_2$; $3\in S$ if and only if $a_1\neq a_3$ and $a_2\neq a_3$; and so on.) In simplest form, let $\dfrac{p}{q}$ be the expected number of positive integers $m$ such that $m$ and $m+1$ are in $S$. Compute $pq$.
2006 Taiwan National Olympiad, 1
There are 94 safes and 94 keys. Each key can open only one safe, and each safe can be opened by only one key. We place randomly one key into each safe. 92 safes are then randomly chosen, and then locked. What is the probability that we can open all the safes with the two keys in the two remaining safes?
(Once a safe is opened, the key inside the safe can be used to open another safe.)
1996 AIME Problems, 12
For each permutation $ a_1, a_2, a_3, \ldots,a_{10}$ of the integers $ 1,2,3,\ldots,10,$ form the sum
\[ |a_1 \minus{} a_2| \plus{} |a_3 \minus{} a_4| \plus{} |a_5 \minus{} a_6| \plus{} |a_7 \minus{} a_8| \plus{} |a_9 \minus{} a_{10}|.\]
The average value of all such sums can be written in the form $ p/q,$ where $ p$ and $ q$ are relatively prime positive integers. Find $ p \plus{} q.$
2012 NIMO Summer Contest, 7
A permutation $(a_1, a_2, a_3, \dots, a_{2012})$ of $(1, 2, 3, \dots, 2012)$ is selected at random. If $S$ is the expected value of
\[
\sum_{i = 1}^{2012} | a_i - i |,
\]
then compute the sum of the prime factors of $S$.
[i]Proposed by Aaron Lin[/i]
1995 Polish MO Finals, 2
An urn contains $n$ balls labeled $1, 2, ... , n$. We draw the balls out one by one (without replacing them) until we obtain a ball whose number is divisible by $k$. Find all $k$ such that the expected number of balls removed is $k$.
2012 NIMO Problems, 8
Concentric circles $\Omega_1$ and $\Omega_2$ with radii $1$ and $100$, respectively, are drawn with center $O$. Points $A$ and $B$ are chosen independently at random on the circumferences of $\Omega_1$ and $\Omega_2$, respectively. Denote by $\ell$ the tangent line to $\Omega_1$ passing through $A$, and denote by $P$ the reflection of $B$ across $\ell$. Compute the expected value of $OP^2$.
[i]Proposed by Lewis Chen[/i]
2011 Purple Comet Problems, 29
Let $S$ be a randomly selected four-element subset of $\{1, 2, 3, 4, 5, 6, 7, 8\}$. Let $m$ and $n$ be relatively prime positive integers so that the expected value of the maximum element in $S$ is $\dfrac{m}{n}$. Find $m + n$.
2008 Pre-Preparation Course Examination, 1
$ R_k(m,n)$ is the least number such that for each coloring of $ k$-subsets of $ \{1,2,\dots,R_k(m,n)\}$ with blue and red colors, there is a subset with $ m$ elements such that all of its k-subsets are red or there is a subset with $ n$ elements such that all of its $ k$-subsets are blue.
a) If we give a direction randomly to all edges of a graph $ K_n$ then what is the probability that the resultant graph does not have directed triangles?
b) Prove that there exists a $ c$ such that $ R_3(4,n)\geq2^{cn}$.
2005 USAMTS Problems, 2
Anna writes a sequence of integers starting with the number 12. Each subsequent integer she writes is chosen randomly with equal chance from among the positive divisors of the previous integer (including the possibility of the integer itself). She keeps writing integers until she writes the integer 1 for the first time, and then she stops. One such sequence is \[ 12, 6, 6, 3, 3, 3, 1. \]
What is the expected value of the number of terms in Anna’s sequence?
2007 Princeton University Math Competition, 7
Tom is searching for the $6$ books he needs in a random pile of $30$ books. What is the expected number of books must he examine before finding all $6$ books he needs?
2010 ELMO Shortlist, 1
For a permutation $\pi$ of $\{1,2,3,\ldots,n\}$, let $\text{Inv}(\pi)$ be the number of pairs $(i,j)$ with $1 \leq i < j \leq n$ and $\pi(i) > \pi(j)$.
[list=1]
[*] Given $n$, what is $\sum \text{Inv}(\pi)$ where the sum ranges over all permutations $\pi$ of $\{1,2,3,\ldots,n\}$?
[*] Given $n$, what is $\sum \left(\text{Inv}(\pi)\right)^2$ where the sum ranges over all permutations $\pi$ of $\{1,2,3,\ldots,n\}$?[/list]
[i]Brian Hamrick.[/i]
2014 Putnam, 4
Suppose $X$ is a random variable that takes on only nonnegative integer values, with $E[X]=1,$ $E[X^2]=2,$ and $E[X^3]=5.$ (Here $E[Y]$ denotes the expectation of the random variable $Y.$) Determine the smallest possible value of the probability of the event $X=0.$
2013 BMT Spring, 8
Let $f(n)$ take in a nonnegative integer $n$ and return an integer between $0$ and $n-1$ at random (with the exception being $f(0)=0$ always). What is the expected value of $f(f(22))$?
2018 CMIMC Individual Finals, 2
John has a standard four-sided die. Each roll, he gains points equal to the value of the roll multiplied by the number of times he has now rolled that number; for example, if his first rolls were $3,3,2,3$, he would have $3+6+2+9=20$ points. Find the expected number of points John will have after rolling the die 25 times.
2012 Math Prize For Girls Problems, 18
Sherry starts at the number 1. Whenever she's at 1, she moves one step up (to 2). Whenever she's at a number strictly between 1 and 10, she moves one step up or one step down, each with probability $\frac{1}{2}$. When she reaches 10, she stops. What is the expected number (average number) of steps that Sherry will take?
2024 Canadian Mathematical Olympiad Qualification, 5
Let $ S$ be the set of $25$ points $(x, y)$ with $0\le x, y \le 4$. A triangle whose three vertices are in $S$ is chosen at random. What is the expected value of the square of its area?