This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 178

1958 February Putnam, A3

Real numbers are chosen at random from the interval $[0,1].$ If after choosing the $n$-th number the sum of the numbers so chosen first exceeds $1$, show that the expected value for $n$ is $e$.

2007 Germany Team Selection Test, 2

Let $ S$ be a finite set of points in the plane such that no three of them are on a line. For each convex polygon $ P$ whose vertices are in $ S$, let $ a(P)$ be the number of vertices of $ P$, and let $ b(P)$ be the number of points of $ S$ which are outside $ P$. A line segment, a point, and the empty set are considered as convex polygons of $ 2$, $ 1$, and $ 0$ vertices respectively. Prove that for every real number $ x$ \[\sum_{P}{x^{a(P)}(1 \minus{} x)^{b(P)}} \equal{} 1,\] where the sum is taken over all convex polygons with vertices in $ S$. [i]Alternative formulation[/i]: Let $ M$ be a finite point set in the plane and no three points are collinear. A subset $ A$ of $ M$ will be called round if its elements is the set of vertices of a convex $ A \minus{}$gon $ V(A).$ For each round subset let $ r(A)$ be the number of points from $ M$ which are exterior from the convex $ A \minus{}$gon $ V(A).$ Subsets with $ 0,1$ and 2 elements are always round, its corresponding polygons are the empty set, a point or a segment, respectively (for which all other points that are not vertices of the polygon are exterior). For each round subset $ A$ of $ M$ construct the polynomial \[ P_A(x) \equal{} x^{|A|}(1 \minus{} x)^{r(A)}. \] Show that the sum of polynomials for all round subsets is exactly the polynomial $ P(x) \equal{} 1.$ [i]Proposed by Federico Ardila, Colombia[/i]

2013 Stanford Mathematics Tournament, 5

An unfair coin lands heads with probability $\tfrac1{17}$ and tails with probability $\tfrac{16}{17}$. Matt flips the coin repeatedly until he flips at least one head and at least one tail. What is the expected number of times that Matt flips the coin?

2013 Princeton University Math Competition, 4

You roll three fair six-sided dice. Given that the highest number you rolled is a $5$, the expected value of the sum of the three dice can be written as $\tfrac ab$ in simplest form. Find $a+b$.

2012 Hitotsubashi University Entrance Examination, 5

At first a fair dice is placed in such way the spot $1$ is shown on the top face. After that, select a face from the four sides at random, the process that the side would be the top face is repeated $n$ times. Note the sum of the spots of opposite face is 7. (1) Find the probability such that the spot $1$ would appear on the top face after the $n$-repetition. (2) Find the expected value of the number of the spot on the top face after the $n$-repetition.

2014 Harvard-MIT Mathematics Tournament, 11

Two fair octahedral dice, each with the numbers $1$ through $8$ on their faces, are rolled. Let $N$ be the remainder when the product of the numbers showing on the two dice is divided by $8$. Find the expected value of $N$.

KoMaL A Problems 2019/2020, A. 759

We choose a random permutation of $1,2,\ldots,n$ with uniform distribution. Prove that the expected value of the length of the longest increasing subsequence in the permutation is at least $\sqrt{n}.$

2024 USAMTS Problems, 2

Calamitous Clod deceives the math beasts by changing a clock at Beast Academy. First, he removes both the minute and hour hands, then places each of them back in a random position, chosen uniformly along the circle. Professor Grok notices that the clock is not displaying a valid time. That is, the hour and minute hands are pointing in an orientation that a real clock would never display. One such example is the hour hand pointed at $6$ and the minute hand pointed at $3$. [center] [asy] import olympiad; size(4cm); defaultpen(fontsize(8pt)); draw(circle(origin, 4)); dot(origin); for(int i = 1; i <= 12; ++i){ label("$"+string(i)+"$", (3.6*sin(i * pi/6), 3.6*cos(i * pi/6))); } draw(origin -- (3.2, 0), EndArrow(5)); draw(origin -- (0, -2.2), EndArrow(5)); [/asy] [/center] The math beasts can fix this, though. They can turn both hands by the same number of degrees clockwise. On average, what is the minimal number of degrees they must turn the hands so that they display a valid time?

STEMS 2022 Math Cat A Qualifier Round, 1

We have $2022$ $1s$ written on a board in a line. We randomly choose a strictly increasing sequence from ${1, 2, . . . , 2022}$ such that the last term is $2022$. If the chosen sequence is $a_1, a_2, ..., a_k$ ($k$ is not fixed), then at the $i^{th}$ step, we choose the first a$_i$ numbers on the line and change the 1s to 0s and 0s to 1s. After $k$ steps are over, we calculate the sum of the numbers on the board, say $S$. The expected value of $S$ is $\frac{a}{b}$ where $a, b$ are relatively prime positive integers. Find $a + b.$

2014 Harvard-MIT Mathematics Tournament, 4

[4] Let $D$ be the set of divisors of $100$. Let $Z$ be the set of integers between $1$ and $100$, inclusive. Mark chooses an element $d$ of $D$ and an element $z$ of $Z$ uniformly at random. What is the probability that $d$ divides $z$?

2014 Harvard-MIT Mathematics Tournament, 23

Let $S=\{-100,-99,-98,\ldots,99,100\}$. Choose a $50$-element subset $T$ of $S$ at random. Find the expected number of elements of the set $\{|x|:x\in T\}$.

2013 Princeton University Math Competition, 14

Shuffle a deck of $71$ playing cards which contains $6$ aces. Then turn up cards from the top until you see an ace. What is the average number of cards required to be turned up to find the first ace?

2023 Miklós Schweitzer, 11

Let $K{}$ be an equilateral triangle of unit area, and choose $n{}$ independent random points uniformly from $K{}$. Let $K_n$ be the intersection of all translations of $K{}$ that contain all the selected points. Determine the expected value of the area of $K_n.$

2008 ITest, 26

Done working on his sand castle design, Joshua sits down and starts rolling a $12$-sided die he found when cleaning the storage shed. He rolls and rolls and rolls, and after $17$ rolls he finally rolls a $1$. Just $3$ rolls later he rolls the first $2\textit{ after}$ that first roll of $1$. $11$ rolls later, Joshua rolls the first $3\textit{ after}$ the first $2$ that he rolled $\textit{after}$ the first $1$ that he rolled. His first $31$ rolls make the sequence \[4,3,11,3,11,8,5,2,12,9,5,7,11,3,6,10,\textbf{1},8,3,\textbf{2},10,4,2,8,1,9,7,12,11,4,\textbf{3}.\] Joshua wonders how many times he should expect to roll the $12$-sided die so that he can remove all but $12$ of the numbers from the entire sequence of rolls and (without changing the order of the sequence), be left with the sequence \[1,2,3,4,5,6,7,8,9,10,11,12.\] What is the expected value of the number of times Joshua must roll the die before he has such a sequence? (Assume Joshua starts from the beginning - do $\textit{not}$ assume he starts by rolling the specific sequence of $31$ rolls above.)

2009 USAMTS Problems, 3

I give you a deck of $n$ cards numbered $1$ through $n$. On each turn, you take the top card of the deck and place it anywhere you choose in the deck. You must arrange the cards in numerical order, with card $1$ on top and card $n$ on the bottom. If I place the deck in a random order before giving it to you, and you know the initial order of the cards, what is the expected value of the minimum number of turns you need to arrange the deck in order?

2007 India IMO Training Camp, 2

Let $ S$ be a finite set of points in the plane such that no three of them are on a line. For each convex polygon $ P$ whose vertices are in $ S$, let $ a(P)$ be the number of vertices of $ P$, and let $ b(P)$ be the number of points of $ S$ which are outside $ P$. A line segment, a point, and the empty set are considered as convex polygons of $ 2$, $ 1$, and $ 0$ vertices respectively. Prove that for every real number $ x$ \[\sum_{P}{x^{a(P)}(1 \minus{} x)^{b(P)}} \equal{} 1,\] where the sum is taken over all convex polygons with vertices in $ S$. [i]Alternative formulation[/i]: Let $ M$ be a finite point set in the plane and no three points are collinear. A subset $ A$ of $ M$ will be called round if its elements is the set of vertices of a convex $ A \minus{}$gon $ V(A).$ For each round subset let $ r(A)$ be the number of points from $ M$ which are exterior from the convex $ A \minus{}$gon $ V(A).$ Subsets with $ 0,1$ and 2 elements are always round, its corresponding polygons are the empty set, a point or a segment, respectively (for which all other points that are not vertices of the polygon are exterior). For each round subset $ A$ of $ M$ construct the polynomial \[ P_A(x) \equal{} x^{|A|}(1 \minus{} x)^{r(A)}. \] Show that the sum of polynomials for all round subsets is exactly the polynomial $ P(x) \equal{} 1.$ [i]Proposed by Federico Ardila, Colombia[/i]

2007 India IMO Training Camp, 3

Let $\mathbb X$ be the set of all bijective functions from the set $S=\{1,2,\cdots, n\}$ to itself. For each $f\in \mathbb X,$ define \[T_f(j)=\left\{\begin{aligned} 1, \ \ \ & \text{if} \ \ f^{(12)}(j)=j,\\ 0, \ \ \ & \text{otherwise}\end{aligned}\right.\] Determine $\sum_{f\in\mathbb X}\sum_{j=1}^nT_{f}(j).$ (Here $f^{(k)}(x)=f(f^{(k-1)}(x))$ for all $k\geq 2.$)

2010 ELMO Shortlist, 8

A tree $T$ is given. Starting with the complete graph on $n$ vertices, subgraphs isomorphic to $T$ are erased at random until no such subgraph remains. For what trees does there exist a positive constant $c$ such that the expected number of edges remaining is at least $cn^2$ for all positive integers $n$? [i]David Yang.[/i]

2014 Math Prize For Girls Problems, 19

Let $n$ be a positive integer. Let $(a, b, c)$ be a random ordered triple of nonnegative integers such that $a + b + c = n$, chosen uniformly at random from among all such triples. Let $M_n$ be the expected value (average value) of the largest of $a$, $b$, and $c$. As $n$ approaches infinity, what value does $\frac{M_n}{n}$ approach?

2013 Princeton University Math Competition, 9

If two distinct integers from $1$ to $50$ inclusive are chosen at random, what is the expected value of their product? Note: The expectation is defined as the sum of the products of probability and value, i.e., the expected value of a coin flip that gives you $\$10$ if head and $\$5$ if tail is $\tfrac12\times\$10+\tfrac12\times\$5=\$7.5$.

2016 CCA Math Bonanza, L4.4

Real numbers $X_1, X_2, \dots, X_{10}$ are chosen uniformly at random from the interval $[0,1]$. If the expected value of $\min(X_1,X_2,\dots, X_{10})^4$ can be expressed as a rational number $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$, what is $m+n$? [i]2016 CCA Math Bonanza Lightning #4.4[/i]

2014 NIMO Problems, 1

You drop a 7 cm long piece of mechanical pencil lead on the floor. A bully takes the lead and breaks it at a random point into two pieces. A piece of lead is unusable if it is 2 cm or shorter. If the expected value of the number of usable pieces afterwards is $\frac{m}n$ for relatively prime positive integers $m$ and $n$, compute $100m + n$. [i]Proposed by Aaron Lin[/i]

2013 Princeton University Math Competition, 7

The Miami Heat and the San Antonio Spurs are playing a best-of-five series basketball championship, in which the team that first wins three games wins the whole series. Assume that the probability that the Heat wins a given game is $x$ (there are no ties). The expected value for the total number of games played can be written as $f(x)$, with $f$ a polynomial. Find $f(-1)$.

2007 Princeton University Math Competition, 6

Joe has $1729$ randomly oriented and randomly arranged unit cubes, which are initially unpainted. He makes two cubes of sidelengths $9$ and $10$ or of sidelengths $1$ and $12$ (randomly chosen). These cubes are dipped into white paint. Then two more cubes of sidelengths $1$ and $12$ or $9$ and $10$ are formed from the same unit cubes, again randomly oriented and randomly arranged, and dipped into paint. Joe continues this process until every side of every unit cube is painted. After how many times of doing this is the expected number of painted faces closest to half of the total?

2009 Math Prize For Girls Problems, 12

Jenny places 100 pennies on a table, 30 showing heads and 70 showing tails. She chooses 40 of the pennies at random (all different) and turns them over. That is, if a chosen penny was showing heads, she turns it to show tails; if a chosen penny was showing tails, she turns it to show heads. At the end, what is the expected number of pennies showing heads?