Found problems: 178
2016 PUMaC Combinatorics A, 6
The George Washington Bridge is $2016$ meters long. Sally is standing on the George Washington Bridge, $1010$ meters from its left end. Each step, she either moves $1$ meter to the left or $1$ meter to the right, each with probability $\dfrac{1}{2}$. What is the expected number of steps she will take to reach an end of the bridge?
2012 NIMO Problems, 7
A permutation $(a_1, a_2, a_3, \dots, a_{2012})$ of $(1, 2, 3, \dots, 2012)$ is selected at random. If $S$ is the expected value of
\[
\sum_{i = 1}^{2012} | a_i - i |,
\]
then compute the sum of the prime factors of $S$.
[i]Proposed by Aaron Lin[/i]
2014 Math Prize For Girls Problems, 10
An ant is on one face of a cube. At every step, the ant walks to one of its four neighboring faces with equal probability. What is the expected (average) number of steps for it to reach the face opposite its starting face?
2007 Germany Team Selection Test, 2
Let $ S$ be a finite set of points in the plane such that no three of them are on a line. For each convex polygon $ P$ whose vertices are in $ S$, let $ a(P)$ be the number of vertices of $ P$, and let $ b(P)$ be the number of points of $ S$ which are outside $ P$. A line segment, a point, and the empty set are considered as convex polygons of $ 2$, $ 1$, and $ 0$ vertices respectively. Prove that for every real number $ x$ \[\sum_{P}{x^{a(P)}(1 \minus{} x)^{b(P)}} \equal{} 1,\] where the sum is taken over all convex polygons with vertices in $ S$.
[i]Alternative formulation[/i]:
Let $ M$ be a finite point set in the plane and no three points are collinear. A subset $ A$ of $ M$ will be called round if its elements is the set of vertices of a convex $ A \minus{}$gon $ V(A).$ For each round subset let $ r(A)$ be the number of points from $ M$ which are exterior from the convex $ A \minus{}$gon $ V(A).$ Subsets with $ 0,1$ and 2 elements are always round, its corresponding polygons are the empty set, a point or a segment, respectively (for which all other points that are not vertices of the polygon are exterior). For each round subset $ A$ of $ M$ construct the polynomial
\[ P_A(x) \equal{} x^{|A|}(1 \minus{} x)^{r(A)}.
\]
Show that the sum of polynomials for all round subsets is exactly the polynomial $ P(x) \equal{} 1.$
[i]Proposed by Federico Ardila, Colombia[/i]
2007 ITest, 19
One day Jason finishes his math homework early, and decides to take a jog through his neighborhood. While jogging, Jason trips over a leprechaun. After dusting himself off and apologizing to the odd little magical creature, Jason, thinking there is nothing unusual about the situation, starts jogging again. Immediately the leprechaun calls out, "hey, stupid, this is your only chance to win gold from a leprechaun!"
Jason, while not particularly greedy, recognizes the value of gold. Thinking about his limited college savings, Jason approaches the leprechaun and asks about the opportunity. The leprechaun hands Jason a fair coin and tells him to flip it as many times as it takes to flip a head. For each tail Jason flips, the leprechaun promises one gold coin.
If Jason flips a head right away, he wins nothing. If he first flips a tail, then a head, he wins one gold coin. If he's lucky and flips ten tails before the first head, he wins $\textit{ten gold coins.}$ What is the expected number of gold coins Jason wins at this game?
$\textbf{(A) }0\hspace{14em}\textbf{(B) }\dfrac1{10}\hspace{13.5em}\textbf{(C) }\dfrac18$
$\textbf{(D) }\dfrac15\hspace{13.8em}\textbf{(E) }\dfrac14\hspace{14em}\textbf{(F) }\dfrac13$
$\textbf{(G) }\dfrac25\hspace{13.7em}\textbf{(H) }\dfrac12\hspace{14em}\textbf{(I) }\dfrac35$
$\textbf{(J) }\dfrac23\hspace{14em}\textbf{(K) }\dfrac45\hspace{14em}\textbf{(L) }1$
$\textbf{(M) }\dfrac54\hspace{13.5em}\textbf{(N) }\dfrac43\hspace{14em}\textbf{(O) }\dfrac32$
$\textbf{(P) }2\hspace{14.1em}\textbf{(Q) }3\hspace{14.2em}\textbf{(R) }4$
$\textbf{(S) }2007$
2009 USAMTS Problems, 3
I give you a deck of $n$ cards numbered $1$ through $n$. On each turn, you take the top card of the deck and place it anywhere you choose in the deck. You must arrange the cards in numerical order, with card $1$ on top and card $n$ on the bottom. If I place the deck in a random order before giving it to you, and you know the initial order of the cards, what is the expected value of the minimum number of turns you need to arrange the deck in order?
KoMaL A Problems 2019/2020, A. 759
We choose a random permutation of $1,2,\ldots,n$ with uniform distribution. Prove that the expected value of the length of the longest increasing subsequence in the permutation is at least $\sqrt{n}.$
2010 Math Prize For Girls Problems, 19
Let $S$ be the set of 81 points $(x, y)$ such that $x$ and $y$ are integers from $-4$ through $4$. Let $A$, $B$, and $C$ be random points chosen independently from $S$, with each of the 81 points being equally likely. (The points $A$, $B$, and $C$ do not have to be different.) Let $K$ be the area of the (possibly degenerate) triangle $ABC$. What is the expected value (average value) of $K^2$ ?
2006 Taiwan National Olympiad, 1
There are 94 safes and 94 keys. Each key can open only one safe, and each safe can be opened by only one key. We place randomly one key into each safe. 92 safes are then randomly chosen, and then locked. What is the probability that we can open all the safes with the two keys in the two remaining safes?
(Once a safe is opened, the key inside the safe can be used to open another safe.)
1971 Bundeswettbewerb Mathematik, 4
Inside a square with side lengths $1$ a broken line of length $>1000$ without selfintersection is drawn.
Show that there is a line parallel to a side of the square that intersects the broken line in at least $501$ points.
2011 China Girls Math Olympiad, 4
A tennis tournament has $n>2$ players and any two players play one game against each other (ties are not allowed). After the game these players can be arranged in a circle, such that for any three players $A,B,C$, if $A,B$ are adjacent on the circle, then at least one of $A,B$ won against $C$. Find all possible values for $n$.
2007 Princeton University Math Competition, 7
Tom is searching for the $6$ books he needs in a random pile of $30$ books. What is the expected number of books must he examine before finding all $6$ books he needs?
2024 JHMT HS, 10
Let $N_9$ be the answer to problem 9.
In a rainforest, there is a row of nine rocks labeled from $1$ to $N_9$. A gecko is standing on rock $1$. The gecko jumps according to following rules:
[list]
[*] if it is on rock $1$, then it will jump with equal probability to any of the other rocks.
[*] if it is on rock $R$ and $R$ is prime, then it will jump to rock $N_9$.
[*] if it is on rock $4$, then it will jump with equal probability to rock $1$ or rock $6$.
[*] if it is on rock $R$ and $R$ is composite with $4<R<N_9$, then it will jump with equal probability to rock $Q$ or $S$, where $Q$ is the greatest composite number less than $R$, and $S$ is the smallest composite number greater than $R$.
[*] if it is on rock $N_9$, then it stops jumping.
[/list]
The expected number of jumps the gecko will take to reach rock $N_9$ is $\tfrac{p}{q}$, where $p$ are $q$ relatively prime positive integers. Compute $p+q$.
2021-IMOC, C5
A drunken person walks randomly on a tree. Each time, he chooses uniformly at random a neighbouring node and walks there. Show that wherever his starting point and goal are, the expected number of steps the person takes to reach the goal is always an integer.
[i]houkai[/i]
1996 All-Russian Olympiad, 4
In the Duma there are 1600 delegates, who have formed 16000 committees of 80 persons each. Prove that one can find two committees having no fewer than four common members.
[i]A. Skopenkov[/i]
2023 AIME, 6
Alice knows that $3$ red cards and $3$ black cards will be revealed to her one at a time in random order. Before each card is revealed, Alice must guess its color. If Alice plays optimally, the expected number of cards she will guess correctly is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
2013 BMT Spring, 8
Let $f(n)$ take in a nonnegative integer $n$ and return an integer between $0$ and $n-1$ at random (with the exception being $f(0)=0$ always). What is the expected value of $f(f(22))$?
2008 Pre-Preparation Course Examination, 1
$ R_k(m,n)$ is the least number such that for each coloring of $ k$-subsets of $ \{1,2,\dots,R_k(m,n)\}$ with blue and red colors, there is a subset with $ m$ elements such that all of its k-subsets are red or there is a subset with $ n$ elements such that all of its $ k$-subsets are blue.
a) If we give a direction randomly to all edges of a graph $ K_n$ then what is the probability that the resultant graph does not have directed triangles?
b) Prove that there exists a $ c$ such that $ R_3(4,n)\geq2^{cn}$.
2014 NIMO Problems, 6
Suppose $x$ is a random real number between $1$ and $4$, and $y$ is a random real number between $1$ and $9$. If the expected value of \[ \left\lceil \log_2 x \right\rceil - \left\lfloor \log_3 y \right\rfloor \] can be expressed as $\frac mn$ where $m$ and $n$ are relatively prime positive integers, compute $100m + n$.
[i]Proposed by Lewis Chen[/i]
1976 AMC 12/AHSME, 12
A supermarket has $128$ crates of apples. Each crate contains at least $120$ apples and at most $144$ apples. What is the largest integer $n$ such that there must be at least $n$ crates containing the same number of apples?
$\textbf{(A) }4\qquad\textbf{(B) }5\qquad\textbf{(C) }6\qquad\textbf{(D) }24\qquad \textbf{(E) }25$
2007 Princeton University Math Competition, 5
Bob, having little else to do, rolls a fair $6$-sided die until the sum of his rolls is greater than or equal to $700$. What is the expected number of rolls needed? Any answer within $.0001$ of the correct answer will be accepted.
2010 ELMO Shortlist, 8
A tree $T$ is given. Starting with the complete graph on $n$ vertices, subgraphs isomorphic to $T$ are erased at random until no such subgraph remains. For what trees does there exist a positive constant $c$ such that the expected number of edges remaining is at least $cn^2$ for all positive integers $n$?
[i]David Yang.[/i]
2018 PUMaC Live Round, Estimation 3
Andrew starts with the $2018$-tuple of binary digits $(0,0,\dots,0)$. On each turn, he randomly chooses one index (between $1$ and $2018$) and flips the digit at that index (makes it $1$ if it was a $0$ and vice versa). What is the smallest $k$ such that, after $k$ steps, the expected number of ones in the sequence is greater than $1008?$
You must give your answer as a nonnegative integer. If your answer is $A$ and the correct answer is $C$, then your score will be $\max\{\lfloor18.5-\tfrac{|A-C|^{1.8}}{40}\rfloor,0\}.$
1988 Polish MO Finals, 2
For a permutation $P = (p_1, p_2, ... , p_n)$ of $(1, 2, ... , n)$ define $X(P)$ as the number of $j$ such that $p_i < p_j$ for every $i < j$. What is the expected value of $X(P)$ if each permutation is equally likely?
2014 NIMO Summer Contest, 10
Among $100$ points in the plane, no three collinear, exactly $4026$ pairs are connected by line segments. Each point is then randomly assigned an integer from $1$ to $100$ inclusive, each equally likely, such that no integer appears more than once. Find the expected value of the number of segments which join two points whose labels differ by at least $50$.
[i]Proposed by Evan Chen[/i]