This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 178

1988 Polish MO Finals, 2

For a permutation $P = (p_1, p_2, ... , p_n)$ of $(1, 2, ... , n)$ define $X(P)$ as the number of $j$ such that $p_i < p_j$ for every $i < j$. What is the expected value of $X(P)$ if each permutation is equally likely?

2014 NIMO Problems, 6

Bob is making partitions of $10$, but he hates even numbers, so he splits $10$ up in a special way. He starts with $10$, and at each step he takes every even number in the partition and replaces it with a random pair of two smaller positive integers that sum to that even integer. For example, $6$ could be replaced with $1+5$, $2+4$, or $3+3$ all with equal probability. He terminates this process when all the numbers in his list are odd. The expected number of integers in his list at the end can be expressed in the form $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Compute $100m+n$. [i]Proposed by Michael Ren[/i]

2007 Princeton University Math Competition, 10

Bob, having little else to do, rolls a fair $6$-sided die until the sum of his rolls is greater than or equal to $700$. What is the expected number of rolls needed? Any answer within $.0001$ of the correct answer will be accepted.

1971 Bundeswettbewerb Mathematik, 4

Inside a square with side lengths $1$ a broken line of length $>1000$ without selfintersection is drawn. Show that there is a line parallel to a side of the square that intersects the broken line in at least $501$ points.

2015 BMT Spring, 6

There are $30$ cities in the empire of Euleria. Every week, Martingale City runs a very well-known lottery. $900$ visitors decide to take a trip around the empire, visiting a different city each week in some random order. $3$ of these cities are inhabited by mathematicians, who will talk to all visitors about the laws of statistics. A visitor with this knowledge has probability $0$ of buying a lottery ticket, else they have probability $0.5$ of buying one. What is the expected number of visitors who will play the Martingale Lottery?

2004 Iran MO (3rd Round), 6

assume that we have a n*n table we fill it with 1,...,n such that each number exists exactly n times prove that there exist a row or column such that at least $\sqrt{n}$ diffrent number are contained.

2018 PUMaC Live Round, 2.3

Sophie has $20$ indistinguishable pairs of socks in a laundry bag. She pulls them out one at a time. After pulling out $30$ socks, the expected number of unmatched socks among the socks that she has pulled out can be expressed in simplest form as $\tfrac{m}{n}$. Find $m+n$.

ICMC 5, 5

A robot on the number line starts at $1$. During the first minute, the robot writes down the number $1$. Each minute thereafter, it moves by one, either left or right, with equal probability. It then multiplies the last number it wrote by $n/t$, where $n$ is the number it just moved to, and $t$ is the number of minutes elapsed. It then writes this number down. For example, if the robot moves right during the second minute, it would write down $2/2=1$. Find the expected sum of all numbers it writes down, given that it is finite. [i]Proposed by Ethan Tan[/i]

2019 Harvard-MIT Mathematics Tournament, 4

Yannick is playing a game with $100$ rounds, starting with $1$ coin. During each round, there is an $n\%$ chance that he gains an extra coin, where $n$ is the number of coins he has at the beginning of the round. What is the expected number of coins he will have at the end of the game?

2014 NIMO Summer Contest, 6

Suppose $x$ is a random real number between $1$ and $4$, and $y$ is a random real number between $1$ and $9$. If the expected value of \[ \left\lceil \log_2 x \right\rceil - \left\lfloor \log_3 y \right\rfloor \] can be expressed as $\frac mn$ where $m$ and $n$ are relatively prime positive integers, compute $100m + n$. [i]Proposed by Lewis Chen[/i]

2018 PUMaC Live Round, 1.3

Let a sequence be defined as follows: $a_0=1$, and for $n>0$, $a_n$ is $\tfrac{1}{3}a_{n-1}$ and is $\tfrac{1}{9}a_{n-1}$ with probability $\tfrac{1}{2}$. If the expected value of $\textstyle\sum_{n=0}^{\infty}a_n$ can be expressed in simplest form as $\tfrac{p}{q}$, what is $p+q$?

KoMaL A Problems 2020/2021, A. 798

Let $0<p<1$ be given. Initially, we have $n$ coins, all of which have probability $p$ of landing on heads, and probability $1-p$ of landing on tails (the results of the tosses are independent of each other). In each round, we toss our coins and remove those that result in heads. We keep repeating this until all our coins are removed. Let $k_n$ denote the expected number of rounds that are needed to get rid of all the coins. Prove that there exists $c>0$ for which the following inequality holds for all $n>0$ \[c\bigg(1+\frac{1}{2}+\cdots+\frac{1}{n}\bigg)<k_n<1+c\bigg(1+\frac{1}{2}+\cdots+\frac{1}{n}\bigg).\]

2013 Online Math Open Problems, 29

Kevin has $255$ cookies, each labeled with a unique nonempty subset of $\{1,2,3,4,5,6,7,8\}$. Each day, he chooses one cookie uniformly at random out of the cookies not yet eaten. Then, he eats that cookie, and all remaining cookies that are labeled with a subset of that cookie (for example, if he chooses the cookie labeled with $\{1,2\}$, he eats that cookie as well as the cookies with $\{1\}$ and $\{2\}$). The expected value of the number of days that Kevin eats a cookie before all cookies are gone can be expressed in the form $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$. [i]Proposed by Ray Li[/i]

2011 Middle European Mathematical Olympiad, 4

Let $n \geq 3$ be an integer. At a MEMO-like competition, there are $3n$ participants, there are n languages spoken, and each participant speaks exactly three different languages. Prove that at least $\left\lceil\frac{2n}{9}\right\rceil$ of the spoken languages can be chosen in such a way that no participant speaks more than two of the chosen languages. [b]Note.[/b] $\lceil x\rceil$ is the smallest integer which is greater than or equal to $x$.

2016 PUMaC Combinatorics A, 6

The George Washington Bridge is $2016$ meters long. Sally is standing on the George Washington Bridge, $1010$ meters from its left end. Each step, she either moves $1$ meter to the left or $1$ meter to the right, each with probability $\dfrac{1}{2}$. What is the expected number of steps she will take to reach an end of the bridge?

2012 Math Prize For Girls Problems, 15

Kate has two bags $X$ and $Y$. Bag $X$ contains $5$ red marbles (and nothing else). Bag $Y$ contains $4$ red marbles and $1$ blue marble (and nothing else). Kate chooses one of her bags at random (each with probability $\frac{1}{2}$) and removes a random marble from that bag (each marble in that bag being equally likely). She repeats the previous step until one of the bags becomes empty. At that point, what is the probability that the blue marble is still in bag $Y$?

2005 USAMTS Problems, 3

We play a game. The pot starts at $\$0$. On every turn, you flip a fair coin. If you flip heads, I add $\$100$ to the pot. If you flip tails, I take all of the money out of the pot, and you are assessed a "strike". You can stop the game before any flip and collect the contents of the pot, but if you get 3 strikes, the game is over and you win nothing. Find, with proof, the expected value of your winnings if you follow an optimal strategy.

2013 Stanford Mathematics Tournament, 3

Suppose two equally strong tennis players play against each other until one player wins three games in a row. The results of each game are independent, and each player will win with probability $\frac{1}{2}$. What is the expected value of the number of games they will play?

2023 Simon Marais Mathematical Competition, B2

There are $256$ players in a tennis tournament who are ranked from $1$ to $256$, with $1$ corresponding to the highest rank and $256$ corresponding to the lowest rank. When two players play a match in the tournament, the player whose rank is higher wins the match with probability $\frac{3}{5}$. In each round of the tournament, the player with the highest rank plays against the player with the second highest rank, the player with the third highest rank plays against the player with the fourth highest rank, and so on. At the end of the round, the players who win proceed to the next round and the players who lose exit the tournament. After eight rounds, there is one player remaining and they are declared the winner. Determine the expected value of the rank of the winner.

2014 Online Math Open Problems, 27

A frog starts at $0$ on a number line and plays a game. On each turn the frog chooses at random to jump $1$ or $2$ integers to the right or left. It stops moving if it lands on a nonpositive number or a number on which it has already landed. If the expected number of times it will jump is $\tfrac{p}{q}$ for relatively prime positive integers $p$ and $q$, find $p+q$. [i]Proposed by Michael Kural[/i]

2007 India IMO Training Camp, 3

Let $\mathbb X$ be the set of all bijective functions from the set $S=\{1,2,\cdots, n\}$ to itself. For each $f\in \mathbb X,$ define \[T_f(j)=\left\{\begin{aligned} 1, \ \ \ & \text{if} \ \ f^{(12)}(j)=j,\\ 0, \ \ \ & \text{otherwise}\end{aligned}\right.\] Determine $\sum_{f\in\mathbb X}\sum_{j=1}^nT_{f}(j).$ (Here $f^{(k)}(x)=f(f^{(k-1)}(x))$ for all $k\geq 2.$)

2013 Stanford Mathematics Tournament, 9

Charles is playing a variant of Sudoku. To each lattice point $(x, y)$ where $1\le x,y <100$, he assigns an integer between $1$ and $100$ inclusive. These integers satisfy the property that in any row where $y=k$, the $99$ values are distinct and never equal to $k$; similarly for any column where $x=k$. Now, Charles randomly selects one of his lattice points with probability proportional to the integer value he assigned to it. Compute the expected value of $x+y$ for the chosen point $(x, y)$.

2014 PUMaC Team, 10

A gambler has $\$25$ and each turn, if the gambler has a positive amount of money, a fair coin is flipped. If it is heads, the gambler gains a dollar and if it is tails, the gambler loses a dollar. But, if the gambler has no money, he will automatically be given a dollar (which counts as a turn). What is the expected number of turns for the gambler to double his money?

2015 AMC 10, 18

Johann has $64$ fair coins. He flips all the coins. Any coin that lands on tails is tossed again. Coins that land on tails on the second toss are tossed a third time. What is the expected number of coins that are now heads? $\textbf{(A) } 32 \qquad\textbf{(B) } 40 \qquad\textbf{(C) } 48 \qquad\textbf{(D) } 56 \qquad\textbf{(E) } 64 $

1970 Putnam, A6

Three numbers are chosen independently at random, one from each of the three intervals $[0, L_i ]$ ($i=1,2,3$). If the distribution of each random number is uniform with respect to the length of the interval it is chosen from, determine the expected value of the smallest number chosen.