This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3

2007 Romania Team Selection Test, 1

For $n\in\mathbb{N}$, $n\geq 2$, $a_{i}, b_{i}\in\mathbb{R}$, $1\leq i\leq n$, such that \[\sum_{i=1}^{n}a_{i}^{2}=\sum_{i=1}^{n}b_{i}^{2}=1, \sum_{i=1}^{n}a_{i}b_{i}=0. \] Prove that \[\left(\sum_{i=1}^{n}a_{i}\right)^{2}+\left(\sum_{i=1}^{n}b_{i}\right)^{2}\leq n. \] [i]Cezar Lupu & Tudorel Lupu[/i]

2007 Balkan MO Shortlist, A3

For $n\in\mathbb{N}$, $n\geq 2$, $a_{i}, b_{i}\in\mathbb{R}$, $1\leq i\leq n$, such that \[\sum_{i=1}^{n}a_{i}^{2}=\sum_{i=1}^{n}b_{i}^{2}=1, \sum_{i=1}^{n}a_{i}b_{i}=0. \] Prove that \[\left(\sum_{i=1}^{n}a_{i}\right)^{2}+\left(\sum_{i=1}^{n}b_{i}\right)^{2}\leq n. \] [i]Cezar Lupu & Tudorel Lupu[/i]

1962 Putnam, B6

Let $$f(x) =\sum_{k=0}^{n} a_{k} \sin kx +b_{k} \cos kx,$$ where $a_k$ and $b_k$ are constants. Show that if $|f(x)| \leq 1$ for $x \in [0, 2 \pi]$ and there exist $0\leq x_1 < x_2 <\ldots < x_{2n} < 2 \pi$ with $|f(x_i )|=1,$ then $f(x)= \cos(nx +a)$ for some constant $a.$