This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 71

2004 Bosnia and Herzegovina Junior BMO TST, 3

Tags: algebra , sum , fraction
Let $a, b, c, d$ be reals such that $\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}= 7$ and $\frac{a}{c}+\frac{b}{d}+\frac{c}{a}+\frac{d}{b}= 12$. Find the value of $w =\frac{a}{b}+\frac{c}{d}$ .

2014 Junior Regional Olympiad - FBH, 2

Tags: fraction
In one class in the school, number of abscent students is $\frac{1}{6}$ of number of students who were present. When teacher sent one student to bring chalk, number of abscent students was $\frac{1}{5}$ of number of students who were present. How many students are in that class?

2017 F = ma, 1

Tags: fraction
A motorcycle rides on the vertical walls around the perimeter of a large circular room. The friction coefficient between the motorcycle tires and the walls is $\mu$. How does the minimum $\mu$ needed to prevent the motorcycle from slipping downwards change with the motorcycle's speed, $s$? $\textbf{(A)}\mu \propto s^{0} \qquad \textbf{(B)}\mu \propto s^{-\frac{1}{2}}\qquad \textbf{(C)}\mu \propto s^{-1}\qquad \textbf{(D)}\mu \propto s^{-2}\qquad \textbf{(E)}\text{none of these}$

2015 Bundeswettbewerb Mathematik Germany, 2

In the decimal expansion of a fraction $\frac{m}{n}$ with positive integers $m$ and $n$ you can find a string of numbers $7143$ after the comma. Show $n>1250$. [i]Example:[/i] I mean something like $0.7143$.

2017 Hanoi Open Mathematics Competitions, 5

Write $2017$ following numbers on the blackboard: $-\frac{1008}{1008}, -\frac{1007}{1008}, ..., -\frac{1}{1008}, 0,\frac{1}{1008},\frac{2}{1008}, ... ,\frac{1007}{1008},\frac{1008}{1008}$ . One processes some steps as: erase two arbitrary numbers $x, y$ on the blackboard and then write on it the number $x + 7xy + y$. After $2016$ steps, there is only one number. The last one on the blackboard is (A): $-\frac{1}{1008}$ (B): $0$ (C): $\frac{1}{1008}$ (D): $-\frac{144}{1008}$ (E): None of the above

2022 AMC 10, 5

Tags: fraction
What is the value of $\frac{(1+\frac{1}{3})(1+\frac{1}{5})(1+\frac{1}{7})}{\sqrt{(1-\frac{1}{3^2})(1-\frac{1}{5^2})(1-\frac{1}{7^2})}}?$ $\textbf{(A) }\sqrt{3} \qquad \textbf{(B) }2 \qquad \textbf{(C) }\sqrt{15} \qquad \textbf{(D) }4 \qquad \textbf{(E) }\sqrt{105}$

2024 ITAMO, 6

For each integer $n$, determine the smallest real number $M_n$ such that \[\frac{1}{a_1}+\frac{a_1}{a_2}+\frac{a_2}{a_3}+\dots+\frac{a_{n-1}}{a_n} \le M_n\] for any $n$-tuple $(a_1,a_2,\dots,a_n)$ of integers such that $1<a_1<a_2<\dots<a_n$.

2016 Czech And Slovak Olympiad III A, 1

Let $p> 3$ be a prime number. Determine the number of all ordered sixes $(a, b, c, d, e, f)$ of positive integers whose sum is $3p$ and all fractions $\frac{a + b}{c + d},\frac{b + c}{d + e},\frac{c + d}{e + f},\frac{d + e}{f + a},\frac{e + f}{a + b}$ have integer values.

2020 Malaysia IMONST 2, 2

Tags: algebra , fraction
Prove that \[1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots +\frac{1}{2019}-\frac{1}{2020}=\frac{1}{1011}+\frac{1}{1012}+\cdots +\frac{1}{2020}\]

1999 Junior Balkan Team Selection Tests - Moldova, 5

Let the set $M =\{\frac{1998}{1999},\frac{1999}{2000} \}$. The set $M$ is completed with new fractions according to the rule: take two distinct fractions$ \frac{p_1}{q_1}$ and $\frac{p_2}{q_2}$ from $M$ thus there are no other numbers in $M$ located between them and a new fraction is formed, $\frac{p_1+p_2}{q_1+q_2}$ which is included in $M$, etc. Show that, after each procedure, the newly obtained fraction is irreducible and is different from the fractions previously included in $M$.

2013 Tournament of Towns, 6

The number $1- \frac12 +\frac13-\frac14+...+\frac{1}{2n-1}-\frac{1}{2n}$ is represented as an irreducible fraction. If $3n+1$ is a prime number, prove that the numerator of this fraction is a multiple of $3n + 1$.

1969 Czech and Slovak Olympiad III A, 3

Let $p$ be a prime. How many different (infinite) sequences $\left(a_k\right)_{k\ge0}$ exist such that for every positive integer $n$ \[\frac{a_0}{a_1}+\frac{a_0}{a_2}+\cdots+\frac{a_0}{a_n}+\frac{p}{a_{n+1}}=1?\]

2022 Kyiv City MO Round 1, Problem 1

Represent $\frac{1}{2021}$ as a difference of two irreducible fractions with smaller denominators. [i](Proposed by Bogdan Rublov)[/i]

2006 Chile National Olympiad, 1

Tags: algebra , fraction
Juana and Juan have to write each one an ordered list of fractions so that the two lists have the same number of fractions and that the difference between the sum of all the fractions from Juana's list and the sum of all fractions from Juan's list is greater than $123$. The fractions in Juana's list are $$\frac{1^2}{1}, \frac{2^2}{3},\frac{3^2}{5},\frac{4^2}{7},\frac{5^2}{9},...$$ And the fractions in John's list are $$\frac{1^2}{3}, \frac{2^2}{5},\frac{3^2}{7},\frac{4^2}{9},\frac{5^2}{11},...$$ Find the least amount of fractions that each one must write to achieve the objective.

2021 AMC 10 Fall, 7

Call a fraction $\frac{a}{b}$, not necessarily in the simplest form [i]special[/i] if $a$ and $b$ are positive integers whose sum is $15$. How many distinct integers can be written as the sum of two, not necessarily different, special fractions? $\textbf{(A)}\ 9 \qquad\textbf{(B)}\ 10 \qquad\textbf{(C)}\ 11 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ 13$

1993 Chile National Olympiad, 3

Tags: algebra , fraction
Let $ r$ be a positive rational. Prove that $\frac{8r + 21}{3r + 8}$ is a better approximation to $\sqrt7$ that $ r$.

1992 Chile National Olympiad, 3

Determine the number of times and the positions in which it appears $\frac12$ in the following sequence of fractions: $$ \frac11, \frac21, \frac12 , \frac31 , \frac22 , \frac13 , \frac41,\frac32,\frac23,\frac14,..., \frac{1}{1992}$$

2013 Israel National Olympiad, 6

Let $x_1,...,x_n$ be positive real numbers, satisfying $x_1+\dots+x_n=n$. Prove that $\frac{x_1}{x_2}+\frac{x_2}{x_3}+\dots+\frac{x_{n-1}}{x_n}+\frac{x_n}{x_1}\leq\frac{4}{x_1\cdot x_2\cdot\dots\cdot x_n}+n-4$.

2025 Kyiv City MO Round 1, Problem 1

Find all triples of positive integers \( a, b, c \) that satisfy the equation: \[ a + \frac{1}{b + \frac{1}{c}} = 20.25. \]

2016 Junior Regional Olympiad - FBH, 2

Which fraction is bigger: $\frac{5553}{5557}$ or $\frac{6664}{6669}$ ?

2016 AMC 12/AHSME, 1

What is the value of $\dfrac{11!-10!}{9!}$? $\textbf{(A)}\ 99\qquad\textbf{(B)}\ 100\qquad\textbf{(C)}\ 110\qquad\textbf{(D)}\ 121\qquad\textbf{(E)}\ 132$

2017 Vietnamese Southern Summer School contest, Problem 2

Let $a,b,c$ be the positive real numbers satisfying $a^2+b^2+c^2=3$. Prove that: $$\frac{a}{b(a+c)}+\frac{b}{c(b+a)}+\frac{c}{a(c+b)}\geq \frac{3}{2}.$$

1970 Czech and Slovak Olympiad III A, 1

Let $p>2$ be a prime and $a,b$ positive integers such that \[\frac ab=1+\frac12+\frac13+\cdots+\frac{1}{p-1}.\] Show that $p$ is a divisor of $a.$

2022 AMC 10, 1

Tags: fraction
What is the value of $$3 + \frac{1}{3+\frac{1}{3+\frac{1}{3}}}?$$ $\textbf{(A) } \frac{31}{10} \qquad \textbf{(B) } \frac{49}{15} \qquad \textbf{(C) } \frac{33}{10} \qquad \textbf{(D) } \frac{109}{33} \qquad \textbf{(E) } \frac{15}{4}$

2014 Contests, 2

Find all the integers $n$ for which $\frac{8n-25}{n+5}$ is cube of a rational number.