This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 71

2020 Malaysia IMONST 2, 2

Tags: algebra , fraction
Prove that \[1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots +\frac{1}{2019}-\frac{1}{2020}=\frac{1}{1011}+\frac{1}{1012}+\cdots +\frac{1}{2020}\]

2010 Regional Olympiad of Mexico Northeast, 2

Of all the fractions $\frac{x}{y}$ that satisfy $$\frac{41}{2010}<\frac{x}{y}<\frac{1}{49}$$ find the one with the smallest denominator.

2016 AMC 12/AHSME, 1

What is the value of $\dfrac{11!-10!}{9!}$? $\textbf{(A)}\ 99\qquad\textbf{(B)}\ 100\qquad\textbf{(C)}\ 110\qquad\textbf{(D)}\ 121\qquad\textbf{(E)}\ 132$

2012 AMC 8, 4

Tags: fraction
Peter's family ordered a 12-slice pizza for dinner. Peter ate one slice and shared another slice equally with his brother Paul. What fraction of the pizza did Peter eat? $\textbf{(A)}\hspace{.05in} \dfrac1{24}\qquad \textbf{(B)}\hspace{.05in}\dfrac1{12} \qquad \textbf{(C)}\hspace{.05in}\dfrac18 \qquad \textbf{(D)}\hspace{.05in}\dfrac16 \qquad \textbf{(E)}\hspace{.05in}\dfrac14 $

2022 Junior Balkan Team Selection Tests - Moldova, 4

Rational number $\frac{m}{n}$ admits representation $$\frac{m}{n} = 1+ \frac12+\frac13 + ...+ \frac{1}{p-1}$$ where p $(p > 2)$ is a prime number. Show that the number $m$ is divisible by $p$.

2017 Israel Oral Olympiad, 2

Simplify the fraction: $\frac{(1^4+4)\cdot (5^4+4)\cdot (9^4+4)\cdot ... (69^4+4)\cdot(73^4+4)}{(3^4+4)\cdot (7^4+4)\cdot (11^4+4)\cdot ... (71^4+4)\cdot(75^4+4)}$.

2016 AMC 10, 1

What is the value of $\dfrac{11!-10!}{9!}$? $\textbf{(A)}\ 99\qquad\textbf{(B)}\ 100\qquad\textbf{(C)}\ 110\qquad\textbf{(D)}\ 121\qquad\textbf{(E)}\ 132$

2024 Baltic Way, 19

Does there exist a positive integer $N$ which is divisible by at least $2024$ distinct primes and whose positive divisors $1 = d_1 < d_2 < \ldots < d_k = N$ are such that the number \[ \frac{d_2}{d_1}+\frac{d_3}{d_2}+\ldots+\frac{d_k}{d_{k-1}} \] is an integer?

2024 CAPS Match, 1

Determine whether there exist 2024 distinct positive integers satisfying the following: if we consider every possible ratio between two distinct numbers (we include both $a/b$ and $b/a$), we will obtain numbers with finite decimal expansions (after the decimal point) of mutually distinct non-zero lengths.

2013 Tournament of Towns, 6

The number $1- \frac12 +\frac13-\frac14+...+\frac{1}{2n-1}-\frac{1}{2n}$ is represented as an irreducible fraction. If $3n+1$ is a prime number, prove that the numerator of this fraction is a multiple of $3n + 1$.

1984 Dutch Mathematical Olympiad, 4

By placing parentheses in the expression $1:2:3$ we can get two different number values: $(1 : 2) : 3 = \frac16$ and $1 : (2 : 3) = \frac32$. Now brackets are placed in the expression $1:2:3:4:5:6:7:8$. Multiple bracket pairs are allowed, whether or not in nest form. (a) What is the largest numerical value we can get, and what is the smallest? (b) How many different number values can be obtained?

2011 IFYM, Sozopol, 8

Tags: fraction , algebra
The fraction $\frac{1}{p}$, where $p$ is a prime number coprime with 10, is presented as an infinite periodic fraction. Prove that, if the number of digits in the period is even, then the arithmetic mean of the digits in the period is equal to $\frac{9}{2}$.

2016 Czech And Slovak Olympiad III A, 1

Let $p> 3$ be a prime number. Determine the number of all ordered sixes $(a, b, c, d, e, f)$ of positive integers whose sum is $3p$ and all fractions $\frac{a + b}{c + d},\frac{b + c}{d + e},\frac{c + d}{e + f},\frac{d + e}{f + a},\frac{e + f}{a + b}$ have integer values.

1999 Junior Balkan Team Selection Tests - Moldova, 5

Let the set $M =\{\frac{1998}{1999},\frac{1999}{2000} \}$. The set $M$ is completed with new fractions according to the rule: take two distinct fractions$ \frac{p_1}{q_1}$ and $\frac{p_2}{q_2}$ from $M$ thus there are no other numbers in $M$ located between them and a new fraction is formed, $\frac{p_1+p_2}{q_1+q_2}$ which is included in $M$, etc. Show that, after each procedure, the newly obtained fraction is irreducible and is different from the fractions previously included in $M$.

2014 Junior Regional Olympiad - FBH, 2

Tags: fraction
In one class in the school, number of abscent students is $\frac{1}{6}$ of number of students who were present. When teacher sent one student to bring chalk, number of abscent students was $\frac{1}{5}$ of number of students who were present. How many students are in that class?

2010 Singapore Junior Math Olympiad, 4

A student divides an integer $m$ by a positive integer $n$, where $n \le 100$, and claims that $\frac{m}{n}=0.167a_1a_2...$ . Show the student must be wrong.

2022 AMC 12/AHSME, 1

Tags: fraction
What is the value of $$3 + \frac{1}{3+\frac{1}{3+\frac{1}{3}}}?$$ $\textbf{(A) } \frac{31}{10} \qquad \textbf{(B) } \frac{49}{15} \qquad \textbf{(C) } \frac{33}{10} \qquad \textbf{(D) } \frac{109}{33} \qquad \textbf{(E) } \frac{15}{4}$

2004 Bosnia and Herzegovina Junior BMO TST, 3

Tags: algebra , sum , fraction
Let $a, b, c, d$ be reals such that $\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}= 7$ and $\frac{a}{c}+\frac{b}{d}+\frac{c}{a}+\frac{d}{b}= 12$. Find the value of $w =\frac{a}{b}+\frac{c}{d}$ .

2017 Brazil Team Selection Test, 1

Tags: fraction , algebra
Consider fractions $\frac{a}{b}$ where $a$ and $b$ are positive integers. (a) Prove that for every positive integer $n$, there exists such a fraction $\frac{a}{b}$ such that $\sqrt{n} \le \frac{a}{b} \le \sqrt{n+1}$ and $b \le \sqrt{n}+1$. (b) Show that there are infinitely many positive integers $n$ such that no such fraction $\frac{a}{b}$ satisfies $\sqrt{n} \le \frac{a}{b} \le \sqrt{n+1}$ and $b \le \sqrt{n}$.

2008 Postal Coaching, 5

Let $n \in N$. Find the maximum number of irreducible fractions a/b (i.e., $gcd(a, b) = 1$) which lie in the interval $(0,1/n)$.

2006 Chile National Olympiad, 1

Tags: fraction , algebra
Juana and Juan have to write each one an ordered list of fractions so that the two lists have the same number of fractions and that the difference between the sum of all the fractions from Juana's list and the sum of all fractions from Juan's list is greater than $123$. The fractions in Juana's list are $$\frac{1^2}{1}, \frac{2^2}{3},\frac{3^2}{5},\frac{4^2}{7},\frac{5^2}{9},...$$ And the fractions in John's list are $$\frac{1^2}{3}, \frac{2^2}{5},\frac{3^2}{7},\frac{4^2}{9},\frac{5^2}{11},...$$ Find the least amount of fractions that each one must write to achieve the objective.

2023 Romania EGMO TST, P4

Tags: algebra , fraction
Consider fractions $\frac{a}{b}$ where $a$ and $b$ are positive integers. (a) Prove that for every positive integer $n$, there exists such a fraction $\frac{a}{b}$ such that $\sqrt{n} \le \frac{a}{b} \le \sqrt{n+1}$ and $b \le \sqrt{n}+1$. (b) Show that there are infinitely many positive integers $n$ such that no such fraction $\frac{a}{b}$ satisfies $\sqrt{n} \le \frac{a}{b} \le \sqrt{n+1}$ and $b \le \sqrt{n}$.

1956 AMC 12/AHSME, 48

Tags: fraction
If $ p$ is a positive integer, then $ \frac {3p \plus{} 25}{2p \minus{} 5}$ can be a positive integer, if and only if $ p$ is: $ \textbf{(A)}\ \text{at least }3 \qquad\textbf{(B)}\ \text{at least }3\text{ and no more than }35 \qquad\textbf{(C)}\ \text{no more than }35$ $ \textbf{(D)}\ \text{equal to }35 \qquad\textbf{(E)}\ \text{equal to }3\text{ or }35$

2017 Peru IMO TST, 15

Tags: algebra , fraction
Consider fractions $\frac{a}{b}$ where $a$ and $b$ are positive integers. (a) Prove that for every positive integer $n$, there exists such a fraction $\frac{a}{b}$ such that $\sqrt{n} \le \frac{a}{b} \le \sqrt{n+1}$ and $b \le \sqrt{n}+1$. (b) Show that there are infinitely many positive integers $n$ such that no such fraction $\frac{a}{b}$ satisfies $\sqrt{n} \le \frac{a}{b} \le \sqrt{n+1}$ and $b \le \sqrt{n}$.

1992 Chile National Olympiad, 3

Determine the number of times and the positions in which it appears $\frac12$ in the following sequence of fractions: $$ \frac11, \frac21, \frac12 , \frac31 , \frac22 , \frac13 , \frac41,\frac32,\frac23,\frac14,..., \frac{1}{1992}$$