This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 297

2013 Oral Moscow Geometry Olympiad, 2

With a compass and a ruler, split a triangle into two smaller triangles with the same sum of squares of sides.

2020 Tuymaada Olympiad, 5

Coordinate axes (without any marks, with the same scale) and the graph of a quadratic trinomial $y = x^2 + ax + b$ are drawn in the plane. The numbers $a$ and $b$ are not known. How to draw a unit segment using only ruler and compass?

1962 Polish MO Finals, 6

Given three lines $ a $, $ b $, $ c $ pairwise skew. Is it possible to construct a parallelepiped whose edges lie on the lines $ a $, $ b $, $ c $?

1959 Czech and Slovak Olympiad III A, 1

Construct a triangle $ABC$ with the right angle at vertex $C$ given lengths of its medians $m_a$, $m_b$. Discuss conditions of solvability.

1973 IMO Shortlist, 10

Let $a_1, \ldots, a_n$ be $n$ positive numbers and $0 < q < 1.$ Determine $n$ positive numbers $b_1, \ldots, b_n$ so that: [i]a.)[/i] $ a_{k} < b_{k}$ for all $k = 1, \ldots, n,$ [i]b.)[/i] $q < \frac{b_{k+1}}{b_{k}} < \frac{1}{q}$ for all $k = 1, \ldots, n-1,$ [i]c.)[/i] $\sum \limits^n_{k=1} b_k < \frac{1+q}{1-q} \cdot \sum \limits^n_{k=1} a_k.$

2013 Sharygin Geometry Olympiad, 4

The diagonals of a convex quadrilateral $ABCD$ meet at point $L$. The orthocenter $H$ of the triangle $LAB$ and the circumcenters $O_1, O_2$, and $O_3$ of the triangles $LBC, LCD$, and $LDA$ were marked. Then the whole configuration except for points $H, O_1, O_2$, and $O_3$ was erased. Restore it using a compass and a ruler.

2019 ELMO Shortlist, A3

Tags: construction
Let $m, n \ge 2$ be integers. Carl is given $n$ marked points in the plane and wishes to mark their centroid.* He has no standard compass or straightedge. Instead, he has a device which, given marked points $A$ and $B$, marks the $m-1$ points that divide segment $\overline{AB}$ into $m$ congruent parts (but does not draw the segment). For which pairs $(m,n)$ can Carl necessarily accomplish his task, regardless of which $n$ points he is given? *Here, the [i]centroid[/i] of $n$ points with coordinates $(x_1, y_1), \dots, (x_n, y_n)$ is the point with coordinates $\left( \frac{x_1 + \dots + x_n}{n}, \frac{y_1 + \dots + y_n}{n}\right)$. [i]Proposed by Holden Mui and Carl Schildkraut[/i]

2011 Sharygin Geometry Olympiad, 8

Using only the ruler, divide the side of a square table into $n$ equal parts. All lines drawn must lie on the surface of the table.

2004 Austria Beginners' Competition, 4

Of a rhombus $ABCD$ we know the circumradius $R$ of $\Delta ABC$ and $r$ of $\Delta BCD$. Construct the rhombus.

1967 IMO Longlists, 53

In making Euclidean constructions in geometry it is permitted to use a ruler and a pair of compasses. In the constructions considered in this question no compasses are permitted, but the ruler is assumed to have two parallel edges, which can be used for constructing two parallel lines through two given points whose distance is at least equal to the breadth of the rule. Then the distance between the parallel lines is equal to the breadth of the ruler. Carry through the following constructions with such a ruler. Construct: [b]a)[/b] The bisector of a given angle. [b]b)[/b] The midpoint of a given rectilinear line segment. [b]c)[/b] The center of a circle through three given non-collinear points. [b]d)[/b] A line through a given point parallel to a given line.

1967 Vietnam National Olympiad, 3

i) $ABCD$ is a rhombus. A tangent to the inscribed circle meets $AB, DA, BC, CD$ at $M, N, P, Q$ respectively. Find a relationship between $BM$ and $DN$. ii) $ABCD$ is a rhombus and $P$ a point inside. The circles through $P$ with centers $A, B, C, D$ meet the four sides $AB, BC, CD, DA$ in eight points. Find a property of the resulting octagon. Use it to construct a regular octagon. iii) Rotate the figure about the line $AC$ to form a solid. State a similar result.

2006 Sharygin Geometry Olympiad, 10.6

A quadrangle was drawn on the board, that you can inscribe and circumscribe a circle. Marked are the centers of these circles and the intersection point of the lines connecting the midpoints of the opposite sides, after which the quadrangle itself was erased. Restore it with a compass and ruler.

2009 Sharygin Geometry Olympiad, 7

Let $s$ be the circumcircle of triangle $ABC, L$ and $W$ be common points of angle's $A$ bisector with side $BC$ and $s$ respectively, $O$ be the circumcenter of triangle $ACL$. Restore triangle $ABC$, if circle $s$ and points $W$ and $O$ are given. (D.Prokopenko)

2002 Cono Sur Olympiad, 2

Given a triangle $ABC$, with right $\angle A$, we know: the point $T$ of tangency of the circumference inscribed in $ABC$ with the hypotenuse $BC$, the point $D$ of intersection of the angle bisector of $\angle B$ with side AC and the point E of intersection of the angle bisector of $\angle C$ with side $AB$ . Describe a construction with ruler and compass for points $A$, $B$, and $C$. Justify.

2000 Switzerland Team Selection Test, 9

Two given circles $k_1$ and $k_2$ intersect at points $P$ and $Q$. Construct a segment $AB$ through $P$ with the endpoints at $k_1$ and $k_2$ for which $AP \cdot PB$ is maximal.

Geometry Mathley 2011-12, 6.2

Let $ABC$ be an acute triangle, and its altitudes $AX,BY,CZ$ concurrent at $H$. Construct circles $(K_a), (K_b), (K_c)$ circumscribing the triangles $AY Z, BZX, CXY$ . Construct a circle $(K)$ that is internally tangent to all the three circles $(Ka), (K_b), (K_c)$. Prove that $(K)$ is tangent to the circumcircle $(O)$ of the triangle $ABC$. Đỗ Thanh Sơn

2007 Oral Moscow Geometry Olympiad, 3

Construct a parallelogram $ABCD$, if three points are marked on the plane: the midpoints of its altitudes $BH$ and $BP$ and the midpoint of the side $AD$.

2016 IFYM, Sozopol, 7

We are given a ruler with two marks at a distance 1. With its help we can do all possible constructions as with a ruler with no measurements, including one more: If there is a line $l$ and point $A$ on $l$, then we can construct points $P_1,P_2\in l$ for which $AP_1=AP_2=1$. By using this ruler, construct a perpendicular from a given point to a given line.

2025 Taiwan Mathematics Olympiad, 4

Find all positive integers $n$ satisfying the following: there exists a way to fill in $1, \cdots, n^2$ into a $n \times n$ grid so that each block has exactly one number, each number appears exactly once, and: 1. For all positive integers $1 \leq i < n^2$, $i$ and $i + 1$ are neighbors (two numbers neighbor each other if and only if their blocks share a common edge.) 2. Any two numbers among $1^2, \cdots, n^2$ are not in the same row or the same column.

2021 Bangladesh Mathematical Olympiad, Problem 10

$A_1A_2A_3A_4A_5A_6A_7A_8$ is a regular octagon. Let $P$ be a point inside the octagon such that the distances from $P$ to $A_1A_2, A_2A_3$ and $A_3A_4$ are $24, 26$ and $27$ respectively. The length of $A_1A_2$ can be written as $a \sqrt{b} -c$, where $a,b$ and $c$ are positive integers and $b$ is not divisible by any square number other than $1$. What is the value of $(a+b+c)$?

1979 Poland - Second Round, 5

Prove that among every ten consecutive natural numbers there is one that is coprime to each of the other nine.

2014 Sharygin Geometry Olympiad, 3

An acute angle $A$ and a point $E$ inside it are given. Construct points $B, C$ on the sides of the angle such that $E$ is the center of the Euler circle of triangle $ABC$. (E. Diomidov)

2018 Yasinsky Geometry Olympiad, 3

Construct triangle $ABC$, given the altitude and the angle bisector both from $A$, if it is known for the sides of the triangle $ABC$ that $2BC = AB + AC$. (Alexey Karlyuchenko)

2005 Sharygin Geometry Olympiad, 9.5

It is given that for no side of the triangle from the height drawn to it, the bisector and the median it is impossible to make a triangle. Prove that one of the angles of the triangle is greater than $135^o$

2006 Oral Moscow Geometry Olympiad, 1

An arbitrary triangle $ABC$ is given. Construct a line that divides it into two polygons, which have equal radii of the circumscribed circles. (L. Blinkov)