This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 297

2002 Austria Beginners' Competition, 4

In a trapezoid $ABCD$ with base $AB$ let $E$ be the midpoint of side $AD$. Suppose further that $2CD=EC=BC=b$. Let $\angle ECB=120^{\circ}$. Construct the trapezoid and determine its area based on $b$.

2024 Oral Moscow Geometry Olympiad, 1

In a plane: 1. An ellipse with foci $F_1$, $F_2$ lies inside a circle $\omega$. Construct a chord $AB$ of $\omega$. touching the ellipse and such that $A$, $B$, $F_1$, and $F_2$ are concyclic. 2. Let a point $P$ lie inside an acute angled triangle $ABC$, and $A'$, $B'$, $C'$ be the projections of $P$ to $BC$, $CA$, $AB$ respectively. Prove that the diameter of circle $A'B'C'$ equals $CP$ if and only if the circle $ABP$ passes through the circumcenter of $ABC$. [i]Proposed by Alexey Zaslavsky[/i] [img]https://cdn.artofproblemsolving.com/attachments/8/e/ac4a006967fb7013efbabf03e55a194cbaa18b.png[/img]

2022 Sharygin Geometry Olympiad, 8.6

Two circles meeting at points $A, B$ and a point $O$ lying outside them are given. Using a compass and a ruler construct a ray with origin $O$ meeting the first circle at point $C$ and the second one at point $D$ in such a way that the ratio $OC : OD$ be maximal.

Durer Math Competition CD Finals - geometry, 2012.C3

Given a convex quadrilateral whose opposite sides are not parallel, and giving an internal point $P$. Find a parallelogram whose vertices are on the side lines of the rectangle and whose center is $P$. Give a method by which we can construct it (provided there is one). [img]https://1.bp.blogspot.com/-t4aCJza0LxI/X9j1qbSQE4I/AAAAAAAAMz4/V9pr7Cd22G4F320nyRLZMRnz18hMw9NHQCLcBGAsYHQ/s0/2012%2BDurer%2BC3.png[/img]

KoMaL A Problems 2020/2021, A. 781

We want to construct an isosceles triangle using a compass and a straightedge. We are given two of the following four data: the length of the base of the triangle $(a),$ the length of the leg of the triangle $(b),$ the radius of the inscribed circle $(r),$ and the radius of the circumscribed circle $(R).$ In which of the six possible cases will we definitely be able to construct the triangle? [i]Proposed by György Rubóczky, Budapest[/i]

1973 IMO, 3

Let $a_1, \ldots, a_n$ be $n$ positive numbers and $0 < q < 1.$ Determine $n$ positive numbers $b_1, \ldots, b_n$ so that: [i]a.)[/i] $ a_{k} < b_{k}$ for all $k = 1, \ldots, n,$ [i]b.)[/i] $q < \frac{b_{k+1}}{b_{k}} < \frac{1}{q}$ for all $k = 1, \ldots, n-1,$ [i]c.)[/i] $\sum \limits^n_{k=1} b_k < \frac{1+q}{1-q} \cdot \sum \limits^n_{k=1} a_k.$

2001 Grosman Memorial Mathematical Olympiad, 5

Triangle $ABC$ in the plane $\Pi$ is called [i]good [/i] if it has the following property: For any point $D$ in space outside the plane $\Pi$, it is possible to construct a triangle with sides of lengths $CD,BD,AD$. Find all good triangles

2014 Sharygin Geometry Olympiad, 4

Tanya has cut out a triangle from checkered paper as shown in the picture. The lines of the grid have faded. Can Tanya restore them without any instruments only folding the triangle (she remembers the triangle sidelengths)? (T. Kazitsyna)

1957 Poland - Second Round, 5

Given a segment $ AB $ and a line $ m $ parallel to this segment. Find the midpoint of the segment $ AB $ using only a ruler, i.e. drawing only straight lines.

1966 IMO Shortlist, 19

Construct a triangle given the radii of the excircles.

2019 Yasinsky Geometry Olympiad, p6

The board features a triangle $ABC$, its center of the circle circumscribed is the point $O$, the midpoint of the side $BC$ is the point $F$, and also some point $K$ on side $AC$ (see fig.). Master knowing that $\angle BAC$ of this triangle is equal to the sharp angle $\alpha$ has separately drawn an angle equal to $\alpha$. After this teacher wiped the board, leaving only the points $O, F, K$ and the angle $\alpha$. Is it possible with a compass and a ruler to construct the triangle $ABC$ ? Justify the answer. (Grigory Filippovsky) [img]https://1.bp.blogspot.com/-RRPt8HbqW4I/XObthZFXyyI/AAAAAAAAKOo/zfHemPjUsI4XAfV_tcmKA6_al0i_gQ9iACK4BGAYYCw/s1600/Yasinsky%2B2019%2Bp6.png[/img]

2024 Middle European Mathematical Olympiad, 1

Let $\mathbb{N}_0$ denote the set of non-negative integers. Determine all non-negative integers $k$ for which there exists a function $f: \mathbb{N}_0 \to \mathbb{N}_0$ such that $f(2024) = k$ and $f(f(n)) \leq f(n+1) - f(n)$ for all non-negative integers $n$.

1950 Polish MO Finals, 6

Prove that if a natural number $n$ is greater than $4$ and is not a prime number, then the produxt of the consecutive natural numbers from $1$ to $n-1$ is divisible by $ n$.

2017 Oral Moscow Geometry Olympiad, 3

On the plane, a non-isosceles triangle is given, a circle circumscribed around it and the center of its inscribed circle are marked. Using only a ruler without tick marks and drawing no more than seven lines, construct the diameter of the circumcircle.

1974 Spain Mathematical Olympiad, 6

Two chords are drawn in a circle of radius equal to unit, $AB$ and $AC$ of equal length. a) Describe how you can construct a third chord $DE$ that is divided into three equal parts by the intersections with $AB$ and $AC$. b) If $AB = AC =\sqrt2$, what are the lengths of the two segments that the chord $DE$ determines in $AB$?

1978 Bundeswettbewerb Mathematik, 4

In a triangle $ABC$, the points $A_1, B_1, C_1$ are symmetric to $A, B,C$ with respect to $B,C, A$, respectively. Given the points $A_1, B_1,C_1$ reconstruct the triangle $ABC$.

2010 IFYM, Sozopol, 3

Two circles are intersecting in points $P$ and $Q$. Construct two points $A$ and $B$ on these circles so that $P\in AB$ and the product $AP.PB$ is maximal.

2024 Ukraine National Mathematical Olympiad, Problem 2

There is a table with $n > 2$ cells in the first row, $n-1$ cells in the second row is a cell, $n-2$ in the third row, $\ldots$, $1$ cell in the $n$-th row. The cells are arranged as shown below. [img]https://i.ibb.co/0Z1CR0c/UMO24-8-2.png[/img] In each cell of the top row Petryk writes a number from $1$ to $n$, so that each number is written exactly once. For each other cell, if the cells directly above it contains numbers $a, b$, it contains number $|a-b|$. What is the largest number that can be written in a single cell of the bottom row? [i]Proposed by Bogdan Rublov[/i]

Kyiv City MO 1984-93 - geometry, 1987.9.4

Inscribe a triangle in a given circle, if its smallest side is known, as well as the point of intersection of altitudes lying outside the circle.

2019 All-Russian Olympiad, 3

An interstellar hotel has $100$ rooms with capacities $101,102,\ldots, 200$ people. These rooms are occupied by $n$ people in total. Now a VIP guest is about to arrive and the owner wants to provide him with a personal room. On that purpose, the owner wants to choose two rooms $A$ and $B$ and move all guests from $A$ to $B$ without exceeding its capacity. Determine the largest $n$ for which the owner can be sure that he can achieve his goal no matter what the initial distribution of the guests is.

2006 Oral Moscow Geometry Olympiad, 4

An arbitrary triangle $ABC$ is given. Construct a straight line passing through vertex $B$ and dividing it into two triangles, the radii of the inscribed circles of which are equal. (M. Volchkevich)

2014 Sharygin Geometry Olympiad, 17

Let $AC$ be the hypothenuse of a right-angled triangle $ABC$. The bisector $BD$ is given, and the midpoints $E$ and $F$ of the arcs $BD$ of the circumcircles of triangles $ADB$ and $CDB$ respectively are marked (the circles are erased). Construct the centers of these circles using only a ruler.

2010 Sharygin Geometry Olympiad, 8

Triangle $ABC$ is inscribed into circle $k$. Points $A_1,B_1, C_1$ on its sides were marked, after this the triangle was erased. Prove that it can be restored uniquely if and only if $AA_1, BB_1$ and $CC_1$ concur.

2024 Kyiv City MO Round 2, Problem 2

Find the smallest positive integer $n$ for which one can select $n$ distinct real numbers such that each of them is equal to the sum of some two other selected numbers. [i]Proposed by Anton Trygub[/i]

1954 Poland - Second Round, 3

Given: point $ A $, line $ p $, and circle $ k $. Construct a triangle $ ABC $ with angles $ A = 60^\circ $, $ B = 90^\circ $, whose vertex $ B $ lies on line $ p $, and vertex $ C $ - on circle $ k $.