This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 4776

2016 CMIMC, 1

For all integers $n\geq 2$, let $f(n)$ denote the largest positive integer $m$ such that $\sqrt[m]{n}$ is an integer. Evaluate \[f(2)+f(3)+\cdots+f(100).\]

2021 Miklós Schweitzer, 3

Let $I \subset \mathbb{R}$ be a nonempty open interval and let $f: I \cap \mathbb{Q} \to \mathbb{R}$ be a function such that for all $x, y \in I \cap \mathbb{Q}$, \[ 4f\left(\frac{3x + y}{4}\right)+ 4f\left(\frac{x + 3y}{4}\right) \le f(x) + 6f\left(\frac{x + y}{2}\right)+ f(y). \] Show that $f$ can be continuously extended to $I$.

2010 Romanian Masters In Mathematics, 2

For each positive integer $n$, find the largest real number $C_n$ with the following property. Given any $n$ real-valued functions $f_1(x), f_2(x), \cdots, f_n(x)$ defined on the closed interval $0 \le x \le 1$, one can find numbers $x_1, x_2, \cdots x_n$, such that $0 \le x_i \le 1$ satisfying \[|f_1(x_1)+f_2(x_2)+\cdots f_n(x_n)-x_1x_2\cdots x_n| \ge C_n\] [i]Marko Radovanović, Serbia[/i]

2008 iTest Tournament of Champions, 3

For how many integers $1\leq n\leq 9999$ is there a solution to the congruence \[\phi(n)\equiv 2\,\,\,\pmod{12},\] where $\phi(n)$ is the Euler phi-function?

2014 AMC 12/AHSME, 20

For how many positive integers $x$ is $\log_{10}{(x-40)} + \log_{10}{(60-x)} < 2$? ${ \textbf{(A)}\ 10\qquad\textbf{(B)}\ 18\qquad\textbf{(C)}\ 19\qquad\textbf{(D)}}\ 20\qquad\textbf{(E)}\ \text{infinitely many} $

1955 Miklós Schweitzer, 2

[b]2.[/b] Let $f_{1}(x), \dots , f_{n}(x)$ be Lebesgue integrable functions on $[0,1]$, with $\int_{0}^{1}f_{1}(x) dx= 0$ $ (i=1,\dots ,n)$. Show that, for every $\alpha \in (0,1)$, there existis a subset $E$ of $[0,1]$ with measure $\alpha$, such that $\int_{E}f_{i}(x)dx=0$. [b](R. 17)[/b]

2014 Saudi Arabia IMO TST, 2

Determine all functions $f:[0,\infty)\rightarrow\mathbb{R}$ such that $f(0)=0$ and \[f(x)=1+5f\left(\left\lfloor{\frac{x}{2}\right\rfloor}\right)-6f\left(\left\lfloor{\frac{x}{4}\right\rfloor}\right)\] for all $x>0$.

1997 Bosnia and Herzegovina Team Selection Test, 3

It is given function $f : A \rightarrow \mathbb{R}$, $(A\subseteq \mathbb{R})$ such that $$f(x+y)=f(x)\cdot f(y)-f(xy)+1; (\forall x,y \in A)$$ If $f : A \rightarrow \mathbb{R}$, $(\mathbb{N} \subseteq A\subseteq \mathbb{R})$ is solution of given functional equation, prove that: $$f(n)=\begin{cases} \frac{c^{n+1}-1}{c-1} \text{, } \forall n \in \mathbb{N}, c \neq 1 \\ n+1 \text{, } \forall n \in \mathbb{N}, c = 1 \end{cases}$$ where $c=f(1)-1$ $a)$ Solve given functional equation for $A=\mathbb{N}$ $b)$ With $A=\mathbb{Q}$, find all functions $f$ which are solutions of the given functional equation and also $f(1997) \neq f(1998)$

2013 Miklós Schweitzer, 8

Let ${f : \Bbb{R} \rightarrow \Bbb{R}}$ be a continuous and strictly increasing function for which \[ \displaystyle f^{-1}\left(\frac{f(x)+f(y)}{2}\right)(f(x)+f(y)) =(x+y)f\left(\frac{x+y}{2}\right) \] for all ${x,y \in \Bbb{R}} ({f^{-1}}$ denotes the inverse of ${f})$. Prove that there exist real constants ${a \neq 0}$ and ${b}$ such that ${f(x)=ax+b}$ for all ${x \in \Bbb{R}}.$ [i]Proposed by Zoltán Daróczy[/i]

PEN K Problems, 22

Find all functions $f:\mathbb{Q}^{+} \to \mathbb{Q}^{+}$ such that for all $x\in \mathbb{Q}^+$: [list] [*] $f(x+1)=f(x)+1$, [*] $f(x^2)=f(x)^2$. [/list]

2005 ISI B.Math Entrance Exam, 4

For a set $S$ we denote its cardinality by $|S|$. Let $e_1,e_2,\ldots,e_k$ be non-negative integers. Let $A_k$ (respectively $B_k$) be the set of all $k$-tuples $(f_1,f_2,\ldots,f_k)$ of integers such that $0\leq f_i\leq e_i$ for all $i$ and $\sum_{i=1}^k f_i$ is even (respectively odd). Show that $|A_k|-|B_k|=0 \textrm{ or } 1$.

2003 Estonia Team Selection Test, 3

Tags: function , algebra
Let $N$ be the set of all non-negative integers and for each $n \in N$ denote $n'= n +1$. The function $A : N^3 \to N$ is defined as follows: (i) $A(0, m, n) = m'$ for all $m, n \in N$ (ii) $A(k', 0, n) =\left\{ \begin{array}{ll} n & if \, \, k = 0 \\ 0 & if \, \,k = 1, \\ 1 & if \, \, k > 1 \end{array} \right.$ for all $k, n \in N$ (iii) $A(k', m', n) = A(k, A(k',m,n), n)$ for all $k,m, n \in N$. Compute $A(5, 3, 2)$. (H. Nestra)

MathLinks Contest 7th, 6.2

Find all functions $ f,g: \mathbb Q \to \mathbb Q$ such that for all rational numbers $ x,y$ we have \[ f(f(x) \plus{} g(y) ) \equal{} g(f(x)) \plus{} y . \]

1996 Romania Team Selection Test, 12

Let $ n\geq 3 $ be an integer and let $ p\geq 2n-3 $ be a prime number. For a set $ M $ of $ n $ points in the plane, no 3 collinear, let $ f: M\to \{0,1,\ldots, p-1\} $ be a function such that (i) exactly one point of $ M $ maps to 0, (ii) if a circle $ \mathcal{C} $ passes through 3 distinct points of $ A,B,C\in M $ then $ \sum_{P\in M\cap \mathcal{C}} f(P) \equiv 0 \pmod p $. Prove that all the points in $ M $ lie on a circle.

2004 Gheorghe Vranceanu, 2

Prove that there is exactly a function $ f:\mathbb{R}_{\ge 0}\longrightarrow\mathbb{R}_{\ge 0} $ satisfying the following two properties: $ \text{(i)} x\in\mathbb{R}_{> 0}\implies \left( f(x)+f(f(x)) =4018020x \wedge f(x)>0 \right) $ $ \text{(ii)} 0=f(0)+f(f(0)) $

1998 National Olympiad First Round, 32

Tags: function
For every $ x,y\in \Re ^{\plus{}}$, the function $ f: \Re ^{\plus{}} \to \Re$ satisfies the condition $ f\left(x\right)\plus{}f\left(y\right)\equal{}f\left(x\right)f\left(y\right)\plus{}1\minus{}\frac{1}{xy}$. If $ f\left(2\right)<1$, then $ f\left(3\right)$ will be $\textbf{(A)}\ 2/3 \\ \textbf{(B)}\ 4/3 \\ \textbf{(C)}\ 1 \\ \textbf{(D)}\ \text{More information needed} \\ \textbf{(E)}\ \text{There is no } f \text{ satisfying the condition above.}$

2023 Switzerland - Final Round, 5

Let $D$ be the set of real numbers excluding $-1$. Find all functions $f: D \to D$ such that for all $x,y \in D$ satisfying $x \neq 0$ and $y \neq -x$, the equality $$(f(f(x))+y)f \left(\frac{y}{x} \right)+f(f(y))=x$$ holds.

2020 Bulgaria Team Selection Test, 5

Given is a function $f:\mathbb{R}\rightarrow \mathbb{R}$ such that $|f(x+y)-f(x)-f(y)|\leq 1$. Prove the existence of an additive function $g:\mathbb{R}\rightarrow \mathbb{R}$ (that is $g(x+y)=g(x)+g(y)$) such that $|f(x)-g(x)|\leq 1$ for any $x \in \mathbb{R}$

1978 IMO Longlists, 34

A function $f : I \to \mathbb R$, defined on an interval $I$, is called concave if $f(\theta x + (1 - \theta)y) \geq \theta f(x) + (1 - \theta)f(y)$ for all $x, y \in I$ and $0 \leq \theta \leq 1$. Assume that the functions $f_1, \ldots , f_n$, having all nonnegative values, are concave. Prove that the function $(f_1f_2 \cdots f_n)^{1/n}$ is concave.

2025 All-Russian Olympiad Regional Round, 10.10

On the graphic of the function $y=x^2$ were selected $1000$ pairwise distinct points, abscissas of which are integer numbers from the segment $[0; 100000]$. Prove that it is possible to choose six different selected points $A$, $B$, $C$, $A'$, $B'$, $C'$ such that areas of triangles $ABC$ and $A'B'C'$ are equals. [i]A. Tereshin[/i]

2005 Bulgaria Team Selection Test, 3

Tags: function , algebra
Let $\mathbb{R}^{*}$ be the set of non-zero real numbers. Find all functions $f : \mathbb{R}^{*} \to \mathbb{R}^{*}$ such that $f(x^{2}+y) = (f(x))^{2} + \frac{f(xy)}{f(x)}$, for all $x,y \in \mathbb{R}^{*}$ and $-x^{2} \not= y$.

2009 IMO Shortlist, 3

Let $f$ be a non-constant function from the set of positive integers into the set of positive integer, such that $a-b$ divides $f(a)-f(b)$ for all distinct positive integers $a$, $b$. Prove that there exist infinitely many primes $p$ such that $p$ divides $f(c)$ for some positive integer $c$. [i]Proposed by Juhan Aru, Estonia[/i]

2013 Miklós Schweitzer, 7

Suppose that ${f: \Bbb{R} \rightarrow \Bbb{R}}$ is an additive function $($that is ${f(x+y) = f(x)+f(y)}$ for all ${x, y \in \Bbb{R}})$ for which ${x \mapsto f(x)f(\sqrt{1-x^2})}$ is bounded of some nonempty subinterval of ${(0,1)}$. Prove that ${f}$ is continuous. [i]Proposed by Zoltán Boros[/i]

2006 MOP Homework, 7

Let $n$ be a given integer greater than two, and let $S = \{1, 2,...,n\}$. Suppose the function $f : S^k \to S$ has the property that $f(a) \ne f(b)$ for every pair $a$ and $b$ of elements in $S^k$ with $a$ and $b$ differ in all components. Prove that $f$ is a function of one of its elements.

1992 IMO, 2

Let $\,{\mathbb{R}}\,$ denote the set of all real numbers. Find all functions $\,f: {\mathbb{R}}\rightarrow {\mathbb{R}}\,$ such that \[ f\left( x^{2}+f(y)\right) =y+\left( f(x)\right) ^{2}\hspace{0.2in}\text{for all}\,x,y\in \mathbb{R}. \]