This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 313

1998 Belarus Team Selection Test, 3

Find all continuous functions $f: R \to R$ such that $g(g(x)) = g(x)+2x$ for all real $x$.

2010 Saudi Arabia IMO TST, 3

Let $f : N \to N$ be a strictly increasing function such that $f(f(n))= 3n$, for all $n \in N$. Find $f(2010)$. Note: $N = \{0,1,2,...\}$

1996 Czech And Slovak Olympiad IIIA, 5

For which integers $k$ does there exist a function $f : N \to Z$ such that $f(1995) =1996$ and $f(xy) = f(x)+ f(y)+k f(gcd(x,y))$ for all $x,y \in N$?

2017 Switzerland - Final Round, 2

Find all functions f : $R \to R $such that for all $x, y \in R$: $$f(x + yf(x)) = f(xf(y)) - x + f(y + f(x)).$$

2016 Thailand Mathematical Olympiad, 3

Determine all functions $f : R \to R$ satisfying $f (f(x)f(y) + f(y)f(z) + f(z)f(x))= f(x) + f(y) + f(z)$ for all real numbers $x, y, z$.

2020 Dutch IMO TST, 3

Find all functions $f: Z \to Z$ that satisfy $$f(-f (x) - f (y))= 1 -x - y$$ for all $x, y \in Z$

2005 Thailand Mathematical Olympiad, 15

A function $f : R \to R$ satisfy the functional equation $f(x + 2y) + 2f(y - 2x) = 3x -4y + 6$ for all reals $x, y$. Compute $f(2548)$.

2015 Saudi Arabia IMO TST, 1

Find all functions $f : R_{>0} \to R$ such that $f \left(\frac{x}{y}\right) = f(x) + f(y) - f(x)f(y)$ for all $x, y \in R_{>0}$. Here, $R_{>0}$ denotes the set of all positive real numbers. Nguyễn Duy Thái Sơn

2020 Durer Math Competition Finals, 5

Let $H = \{-2019,-2018, ...,-1, 0, 1, 2, ..., 2020\}$. Describe all functions $f : H \to H$ for which a) $x = f(x) - f(f(x))$ holds for every $x \in H$. b) $x = f(x) + f(f(x)) - f(f(f(x)))$ holds for every $x \in H$. c) $x = f(x) + 2f(f(x)) - 3f(f(f(x)))$ holds for every $x \in H$. PS. (a) + (b) for category E 1.5, (b) + (c) for category E+ 1.2

MathLinks Contest 3rd, 1

Find all functions $f : (0, +\infty) \to (0, +\infty)$ which are increasing on $[1, +\infty)$ and for all positive reals $a, b, c$ they fulfill the following relation $f(ab)f(bc)f(ca)=f(a^2b^2c^2)+f(a^2)+f(b^2)+f(c^2)$.

2015 Cuba MO, 1

Let $f$ be a function of the positive reals in the positive reals, such that $$f(x) \cdot f(y) - f(xy) = \frac{x}{y} + \frac{y}{x} \ \ for \ \ all \ \ x, y > 0 .$$ (a) Find $f(1)$. (b) Find $f(x)$.

1993 Bulgaria National Olympiad, 5

Let $Oxy$ be a fixed rectangular coordinate system in the plane. Each ordered pair of points $A_1, A_2$ from the same plane which are different from O and have coordinates $x_1, y_1$ and $x_2, y_2$ respectively is associated with real number $f(A_1,A_2)$ in such a way that the following conditions are satisfied: (a) If $OA_1 = OB_1$, $OA_2 = OB_2$ and $A_1A_2 = B_1B_2$ then $f(A_1,A_2) = f(B_1,B_2)$. (b) There exists a polynomial of second degree $F(u,v,w,z)$ such that $f(A_1,A_2)=F(x_1,y_1,x_2,y_2)$. (c) There exists such a number $\phi \in (0,\pi)$ that for every two points $A_1, A_2$ for which $\angle A_1OA_2 = \phi$ is satisfied $f(A_1,A_2) = 0$. (d) If the points $A_1, A_2$ are such that the triangle $OA_1A_2$ is equilateral with side $1$ then$ f(A_1,A_2) = \frac12$. Prove that $f(A_1,A_2) = \overrightarrow{OA_1} \cdot \overrightarrow{OA_2}$ for each ordered pair of points $A_1, A_2$.

2009 IMAC Arhimede, 4

Let $m,n \in Z, m\ne n, m \ne 0, n \ne 0$ . Find all $f: Z \to R$ such that $f(mx+ny)=mf(x)+nf(y)$ for all $x,y \in Z$ .

2011 QEDMO 10th, 1

Find all functions $f: R\to R$ with the property that $xf (y) + yf (x) = (x + y) f (xy)$ for all $x, y \in R$.

1998 Italy TST, 1

A real number $\alpha$ is given. Find all functions $f : R^+ \to R^+$ satisfying $\alpha x^2f\left(\frac{1}{x}\right) +f(x) =\frac{x}{x+1}$ for all $x > 0$.

OIFMAT I 2010, 1

Let $ f (n) $ be a function that fulfills the following properties: $\bullet$ For each natural $ n $, $ f (n) $ is an integer greater than or equal to $ 0 $. $\bullet$ $f (n) = 2010 $, if $ n $ ends in $ 7 $. For example, $ f (137) = 2010 $. $\bullet$ If $ a $ is a divisor of $ b $, then: $ f \left(\frac {b} {a} \right) = | f (b) -f (a) | $. Find $ \displaystyle f (2009 ^ {2009 ^ {2009}}) $ and justify your answer.

1976 Polish MO Finals, 6

An increasing function $f : N \to R$ satisfies $$f(kl) = f(k)+ f(l)\,\,\, for \,\,\, all \,\,\, k,l \in N.$$ Show that there is a real number $p > 1$ such that $f(n) =\ log_pn$ for all $n$.

2017 Costa Rica - Final Round, 6

Let $f:] 0. \infty [ \to R$ be a strictly increasing function, such that $$f (x) f\left(f (x) +\frac{1}{x} \right)= 1.$$ Find $f (1)$.

2007 Estonia Team Selection Test, 5

Find all continuous functions $f: R \to R$ such that for all reals $x$ and $y$, $f(x+f(y)) = y+f(x+1)$.

1992 Rioplatense Mathematical Olympiad, Level 3, 1

Let $f:Z \to N -\{0\}$ such that: $f(x + y)f(x-y) = (f(x)f(y))^2$ and $f(1)\ne 1$. Provethat $\log_{f(1)}f(z)$ is a perfect square for every integer $z$.

1998 Slovenia Team Selection Test, 1

Find all functions $f : R \to R$ that satisfy $f((x-y)^2)= f(x)^2 -2x f(y)+y^2$ for all $x,y \in R$

2017 Puerto Rico Team Selection Test, 6

Find all functions $f: R \to R$ such that $f (xy) \le yf (x) + f (y)$, for all $x, y\in R$.

2019 Abels Math Contest (Norwegian MO) Final, 3b

Find all real functions $f$ defined on the real numbers except zero, satisfying $f(2019) = 1$ and $f(x)f(y)+ f\left(\frac{2019}{x}\right) f\left(\frac{2019}{y}\right) =2f(xy)$ for all $x,y \ne 0$

2014 Abels Math Contest (Norwegian MO) Final, 1b

Find all functions $f : R-\{0\} \to R$ which satisfy $(1 + y)f(x) - (1 + x)f(y) = yf(x/y) - xf(y/x)$ for all real $x, y \ne 0$, and which take the values $f(1) = 32$ and $f(-1) = -4$.

2019 Greece Team Selection Test, 4

Find all functions $f:(0,\infty)\mapsto\mathbb{R}$ such that $\displaystyle{(y^2+1)f(x)-yf(xy)=yf\left(\frac{x}{y}\right),}$ for every $x,y>0$.