This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1513

2002 Irish Math Olympiad, 3

Find all functions $ f: \mathbb{Q} \rightarrow \mathbb{Q}$ such that: $ f(x\plus{}f(y))\equal{}y\plus{}f(x)$ for all $ x,y \in \mathbb{Q}$.

2010 Thailand Mathematical Olympiad, 5

Determine all functions $f : R \times R \to R$ satisfying the equation $f(x - t, y) + f(x + t, y) + f(x, y - t) + f(x, y + t) = 2010$ for all real numbers $x, y$ and for all nonzero $t$

2018 Azerbaijan BMO TST, 2

Find all functions $f :Z_{>0} \to Z_{>0}$ such that the number $xf(x) + f ^2(y) + 2xf(y)$ is a perfect square for all positive integers $x,y$.

2022 Swedish Mathematical Competition, 2

Find all functions $f : R \to R$ such that $$f(x + zf(y)) = f(x) + zf(y), $$ for all $x, y, z \in R$.

2008 IMO Shortlist, 6

Let $ f: \mathbb{R}\to\mathbb{N}$ be a function which satisfies $ f\left(x \plus{} \dfrac{1}{f(y)}\right) \equal{} f\left(y \plus{} \dfrac{1}{f(x)}\right)$ for all $ x$, $ y\in\mathbb{R}$. Prove that there is a positive integer which is not a value of $ f$. [i]Proposed by Žymantas Darbėnas (Zymantas Darbenas), Lithuania[/i]

2023 Macedonian Balkan MO TST, Problem 4

Let $f$ be a non-zero function from the set of positive integers to the set of non-negative integers such that for all positive integers $a$ and $b$ we have $$2f(ab)=(b+1)f(a)+(a+1)f(b).$$ Prove that for every prime number $p$ there exists a prime $q$ and positive integers $x_{1}$, ..., $x_{n}$ and $m \geq 0$ so that $$\frac{f(q^{p})}{f(q)} = (px_{1}+1) \cdot ... \cdot (px_{n}+1) \cdot p^{m},$$ where the integers $px_{1}+1$,..., $px_{n}+1$ are all prime. [i]Authored by Nikola Velov[/i]

2006 Iran MO (3rd Round), 5

A calculating ruler is a ruler for doing algebric calculations. This ruler has three arms, two of them are sationary and one can move freely right and left. Each of arms is gradient. Gradation of each arm depends on the algebric operation ruler does. For eaxample the ruler below is designed for multiplying two numbers. Gradations are logarithmic. [img]http://aycu05.webshots.com/image/5604/2000468517162383885_rs.jpg[/img] For working with ruler, (e.g for calculating $x.y$) we must move the middle arm that the arrow at the beginning of its gradation locate above the $x$ in the lower arm. We find $y$ in the middle arm, and we will read the number on the upper arm. The number written on the ruler is the answer. 1) Design a ruler for calculating $x^{y}$. Grade first arm ($x$) and ($y$) from 1 to 10. 2) Find all rulers that do the multiplication in the interval $[1,10]$. 3) Prove that there is not a ruler for calculating $x^{2}+xy+y^{2}$, that its first and second arm are grade from 0 to 10.

2006 Germany Team Selection Test, 2

Find all functions $ f: \mathbb{R}\to\mathbb{R}$ such that $ f(x+y)+f(x)f(y)=f(xy)+2xy+1$ for all real numbers $ x$ and $ y$. [i]Proposed by B.J. Venkatachala, India[/i]

2002 Singapore MO Open, 4

Find all real-valued functions $f : Q \to R$ defined on the set of all rational numbers $Q$ satisfying the conditions $f(x + y) = f(x) + f(y) + 2xy$ for all $x, y$ in $Q$ and $f(1) = 2002.$ Justify your answers.

2018 Middle European Mathematical Olympiad, 1

Let $Q^+$ denote the set of all positive rational number and let $\alpha\in Q^+.$ Determine all functions $f:Q^+ \to (\alpha,+\infty )$ satisfying $$f(\frac{ x+y}{\alpha}) =\frac{ f(x)+f(y)}{\alpha}$$ for all $x,y\in Q^+ .$

1998 Estonia National Olympiad, 3

A function $f$ satisfies the conditions $f (x) \ne 0$ and $f (x+2) = f (x-1) f (x+5)$ for all real x. Show that $f (x+18) = f (x)$ for any real $x$.

2013 IFYM, Sozopol, 5

Find all polynomilals $P$ with real coefficients, such that $(x+1)P(x-1)+(x-1)P(x+1)=2xP(x)$

2009 Belarus Team Selection Test, 3

a) Does there exist a function $f: N \to N$ such that $f(f(n))=f(n+1) - f(n)$ for all $n \in N$? b) Does there exist a function $f: N \to N$ such that $f(f(n))=f(n+2) - f(n)$ for all $n \in N$? I. Voronovich

2018 Swedish Mathematical Competition, 2

Find all functions $f: R \to R$ that satisfy $f (x) + 2f (\sqrt[3]{1-x^3}) = x^3$ for all real $x$. (Here $\sqrt[3]{x}$ is defined all over $R$.)

2012 Peru IMO TST, 1

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $$\displaystyle{f(f(x)) = \frac{x^2 - x}{2}\cdot f(x) + 2-x,}$$ for all $x \in \mathbb{R}.$ Find all possible values of $f(2).$

1984 AIME Problems, 7

The function $f$ is defined on the set of integers and satisfies \[ f(n)=\begin{cases} n-3 & \text{if } n\ge 1000 \\ f(f(n+5)) & \text{if } n<1000\end{cases} \] Find $f(84)$.

2014 Swedish Mathematical Competition, 3

Determine all functions $f: \mathbb R \to \mathbb R$, such that $$ f (f (x + y) - f (x - y)) = xy$$ for all real $x$ and $y$.

2024 Pan-American Girls’ Mathematical Olympiad, 5

Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that $f(f(x+y) - f(x)) + f(x)f(y) = f(x^2) - f(x+y),$ for all real numbers $x, y$.

2021 Dutch IMO TST, 3

Find all functions $f : R \to R$ with $f (x + yf(x + y))= y^2 + f(x)f(y)$ for all $x, y \in R$.

2020 Iran MO (3rd Round), 3

find all $k$ distinct integers $a_1,a_2,...,a_k$ such that there exists an injective function $f$ from reals to themselves such that for each positive integer $n$ we have $$\{f^n(x)-x| x \in \mathbb{R} \}=\{a_1+n,a_2+n,...,a_k+n\}$$.

2014 BMT Spring, 8

Suppose an integer-valued function $f$ satisfies $$\sum_{k=1}^{2n+1}f(k)=\ln|2n+1|-4\ln|2n-1|\enspace\text{and}\enspace\sum_{k=0}^{2n}f(k)=4e^n-e^{n-1}$$ for all non-negative integers $n$. Determine $\sum_{n=0}^\infty\frac{f(n)}{2^n}$.

2023 Bangladesh Mathematical Olympiad, P5

Consider an integrable function $f:\mathbb{R} \rightarrow \mathbb{R}$ such that $af(a)+bf(b)=0$ when $ab=1$. Find the value of the following integration: $$ \int_{0}^{\infty} f(x) \,dx $$

2022 Pan-African, 4

Find all functions $f$ and $g$ defined from $\mathbb{R}_{>0}$ to $\mathbb{R}_{>0}$ such that for all $x, y > 0$ the two equations hold $$ (f(x) + y - 1)(g(y) + x - 1) = {(x + y)}^2 $$ $$ (-f(x) + y)(g(y) + x) = (x + y + 1)(y - x - 1) $$ [i]Note: $\mathbb{R}_{>0}$ denotes the set of positive real numbers.[/i]

2015 IMO, 5

Let $\mathbb R$ be the set of real numbers. Determine all functions $f:\mathbb R\to\mathbb R$ that satisfy the equation\[f(x+f(x+y))+f(xy)=x+f(x+y)+yf(x)\]for all real numbers $x$ and $y$. [i]Proposed by Dorlir Ahmeti, Albania[/i]

2023 IRN-SGP-TWN Friendly Math Competition, 2

Let $f: \mathbb{R}^{2} \to \mathbb{R}^{+}$such that for every rectangle $A B C D$ one has $$ f(A)+f(C)=f(B)+f(D). $$ Let $K L M N$ be a quadrangle in the plane such that $f(K)+f(M)=f(L)+f(N)$, for each such function. Prove that $K L M N$ is a rectangle. [i]Proposed by Navid.[/i]