This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1513

1997 South africa National Olympiad, 4

Find all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ which satisfy \[ f(m + f(n)) = f(m) + n \] for all $m,n \in \mathbb{Z}$.

1992 IMO Shortlist, 6

Let $\,{\mathbb{R}}\,$ denote the set of all real numbers. Find all functions $\,f: {\mathbb{R}}\rightarrow {\mathbb{R}}\,$ such that \[ f\left( x^{2}+f(y)\right) =y+\left( f(x)\right) ^{2}\hspace{0.2in}\text{for all}\,x,y\in \mathbb{R}. \]

1988 China Team Selection Test, 2

Find all functions $f: \mathbb{Q} \mapsto \mathbb{C}$ satisfying (i) For any $x_1, x_2, \ldots, x_{1988} \in \mathbb{Q}$, $f(x_{1} + x_{2} + \ldots + x_{1988}) = f(x_1)f(x_2) \ldots f(x_{1988})$. (ii) $\overline{f(1988)}f(x) = f(1988)\overline{f(x)}$ for all $x \in \mathbb{Q}$.

2012 ELMO Shortlist, 8

Find all functions $f : \mathbb{Q} \to \mathbb{R}$ such that $f(x)f(y)f(x+y) = f(xy)(f(x) + f(y))$ for all $x,y\in\mathbb{Q}$. [i]Sammy Luo and Alex Zhu.[/i]

2016 Middle European Mathematical Olympiad, 4

Find all $f : \mathbb{N} \to \mathbb{N} $ such that $f(a) + f(b)$ divides $2(a + b - 1)$ for all $a, b \in \mathbb{N}$. Remark: $\mathbb{N} = \{ 1, 2, 3, \ldots \} $ denotes the set of the positive integers.

2016 Costa Rica - Final Round, F3

Let $f: Z^+ \to Z^+ \cup \{0\}$ a function that meets the following conditions: a) $f (a b) = f (a) + f (b)$, b) $f (a) = 0$ provided that the digits of the unit of $a$ are $7$, c) $f (10) = 0$. Find $f (2016).$

2021 Vietnam National Olympiad, 2

Find all function $f:\mathbb{R}\to \mathbb{R}$ such that \[f(x)f(y)=f(xy-1)+yf(x)+xf(y)\] for all $x,y \in \mathbb{R}$

2015 ISI Entrance Examination, 8

Find all the functions $f:\mathbb{R} \rightarrow \mathbb{R}$ such that $$|f(x)-f(y)| = 2 |x - y| $$

2003 Tuymaada Olympiad, 4

Find all continuous functions $f(x)$ defined for all $x>0$ such that for every $x$, $y > 0$ \[ f\left(x+{1\over x}\right)+f\left(y+{1\over y}\right)= f\left(x+{1\over y}\right)+f\left(y+{1\over x}\right) . \] [i]Proposed by F. Petrov[/i]

2009 Switzerland - Final Round, 6

Find all functions $f : R_{>0} \to R_{>0}$, which for all $x > y > z > 0$ is the following equation holds $$f(x - y + z) = f(x) + f(y) + f(z) - xy - yz + xz.$$

2022 Iran MO (2nd round), 2

Find all functions $f:\mathbb{R}\rightarrow \mathbb{R}$ such that for any real value of $x,y$ we have: $$f(xf(y)+f(x)+y)=xy+f(x)+f(y)$$

The Golden Digits 2024, P1

Determine all functions $f:\mathbb{R}_+\to\mathbb{R}_+$ which satisfy \[f\left(\frac{y}{f(x)}\right)+x=f(xy)+f(f(x)),\]for any positive real numbers $x$ and $y$. [i]Proposed by Pavel Ciurea[/i]

PEN K Problems, 5

Find all functions $f: \mathbb{N}\to \mathbb{N}$ such that for all $n\in \mathbb{N}$: \[f(f(m)+f(n))=m+n.\]

2010 Germany Team Selection Test, 3

Find all functions $f$ from the set of real numbers into the set of real numbers which satisfy for all $x$, $y$ the identity \[ f\left(xf(x+y)\right) = f\left(yf(x)\right) +x^2\] [i]Proposed by Japan[/i]

BIMO 2020, 1

Find all functions $ f : \mathbb{R} \rightarrow \mathbb{R} $ such that for all reals $ x, y $,$$ f(x^2+f(x+y))=y+xf(x+1) $$

2009 Germany Team Selection Test, 2

For every $ n\in\mathbb{N}$ let $ d(n)$ denote the number of (positive) divisors of $ n$. Find all functions $ f: \mathbb{N}\to\mathbb{N}$ with the following properties: [list][*] $ d\left(f(x)\right) \equal{} x$ for all $ x\in\mathbb{N}$. [*] $ f(xy)$ divides $ (x \minus{} 1)y^{xy \minus{} 1}f(x)$ for all $ x$, $ y\in\mathbb{N}$.[/list] [i]Proposed by Bruno Le Floch, France[/i]

PEN K Problems, 20

Find all functions $f: \mathbb{Q}\to \mathbb{Q}$ such that for all $x,y \in \mathbb{Q}$: \[f(x+y)+f(x-y)=2(f(x)+f(y)).\]

2005 Federal Math Competition of S&M, Problem 3

Determine all polynomials $p$ with real coefficients for which $p(0)=0$ and $$f(f(n))+n=4f(n)\qquad\text{for all }n\in\mathbb N,$$where $f(n)=\lfloor p(n)\rfloor$.

2025 China Team Selection Test, 24

Find all functions $f:\mathbb Z\to\mathbb Z$ such that $f$ is unbounded and \[2f(m)f(n)-f(n-m)-1\] is a perfect square for all integer $m,n.$

KoMaL A Problems 2024/2025, A. 895

Let's call a function $f:\mathbb R\to\mathbb R$[i] weakly periodic[/i] if it is continuous and $f(x+1)=f(f(x))+1$ for all $x\in\mathbb R$. a) Does there exist a weakly periodic function such that $f(x)>x$ for all $x\in\mathbb R$? b) Does there exist a weakly periodic function such that $f(x)<x$ for all $x\in\mathbb R$? [i]Proposed by: András Imolay, Budapest[/i]

1996 Abels Math Contest (Norwegian MO), 4

Let $f : N \to N$ be a function such that $f(f(1995)) = 95, f(xy) = f(x)f(y)$ and $f(x) \le x$ for all $x,y$. Find all possible values of $f(1995)$.

2016 Belarus Team Selection Test, 2

Find all real numbers $a$ such that exists function $\mathbb {R} \rightarrow \mathbb {R} $ satisfying the following conditions: 1) $f(f(x)) =xf(x)-ax$ for all real $x$ 2) $f$ is not constant 3) $f$ takes the value $a$

2006 Brazil National Olympiad, 3

Find all functions $f\colon \mathbb{R}\to \mathbb{R}$ such that \[f(xf(y)+f(x)) = 2f(x)+xy\] for every reals $x,y$.

2020 GQMO, 5

Let $\mathbb{Q}$ denote the set of rational numbers. Determine all functions $f:\mathbb{Q}\longrightarrow\mathbb{Q}$ such that, for all $x, y \in \mathbb{Q}$, $$f(x)f(y+1)=f(xf(y))+f(x)$$ [i]Nicolás López Funes and José Luis Narbona Valiente, Spain[/i]

2013 IMO Shortlist, A5

Let $\mathbb{Z}_{\ge 0}$ be the set of all nonnegative integers. Find all the functions $f: \mathbb{Z}_{\ge 0} \rightarrow \mathbb{Z}_{\ge 0} $ satisfying the relation \[ f(f(f(n))) = f(n+1 ) +1 \] for all $ n\in \mathbb{Z}_{\ge 0}$.